1. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159
2. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates," Microwave Opt. Technol. Lett., Vol. 7, No. 13, 599-604, 1994.
doi:10.1002/mop.4650071304
3. Berenger, J. P., "An effective PML for the absorption of evanescent waves in waveguides," IEEE Microwave Guided Wave Lett., Vol. 8, No. 5, 188-190, 1998.
doi:10.1109/75.668706
4. Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propagat., Vol. 43, No. 12, 1460-1463, 1995.
doi:10.1109/8.477075
5. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave Opt. Technol. Lett., Vol. 27, No. 5, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A
6. Shi, Y. and C.-H. Liang, "A strongly well-posed pml with unsplitfield formulations in cylindrical and spherical coordinates," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1761-1776, 2005.
doi:10.1163/156939305775696784
7. Uduwawala, D., M. Norgren, P. Fuks, and A. Gunawardena, "A complete fdtd simulation of a real gpr antenna system operating above lossy and dispersive grounds," Progress In Electromagnetics Research, Vol. 50, 209-229, 2005.
doi:10.2528/PIER04061002
8. Ali, M. and S. Sanyal, "FDTD analysis of dipole antenna as EMI sensor," Progress In Electromagnetics Research, Vol. 69, 341-359, 2007.
doi:10.2528/PIER06122801
9. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-d buried objects using parallel genetic algorithm combined with fdtd technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264
10. Golestani-Rad, L., J. Rashad-Mohassel, and M.-M. Danaie, "Rigorous analysis of em-wave penetration into a typical room using fdtd method: The transfer function concept," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 913-926, 2006.
doi:10.1163/156939306776149851
11. Roberts, A. R. and J. Joubert, "PML absorbing boundary condition for higher-order FDTD schemes," Electron. Lett., Vol. 33, No. 1, 32-34, 1997.
doi:10.1049/el:19970062
12. Kantartzis, N. V. and T. D. Tsiboukis, "A higher-order FDTD technique for the implementation of enhanced dispersionless perfectly matched layers combined with efficient absorbing boundary conditions," IEEE Transactions on Magnetics, Vol. 34, No. 5, 2736-2739, 1998.
doi:10.1109/20.717635
13. Fang, J., "Time domain finite difference computation for Maxwell's equations," Ph.D. dissertation, 1989.
14. Hadi, M. F. and M. Piket-May, "A modified FDTD (2,4) scheme for modeling electrically large structures with high-phase accuracy," IEEE Trans. Antennas Propagat., Vol. 45, No. 2, 254-264, 1997.
doi:10.1109/8.560344
15. Hadi, M. F. and R. K. Dib, "Phase-matching the hybrid m24/s22 fdtd algorithm," in 23rd International Review of Progress in Applied Computational Electromagnetics, No. 3, 463-469, 2007.
16. Holland, R., L. Simpson, and K. Kunz, "Finite-difference analysis of EMP coupling to lossy dielectric structures," IEEE Trans. Electromagn. Compat., Vol. EMC-22, No. 3, 203-209, 1980.
doi:10.1109/TEMC.1980.303880
17. Taflove, A., Computational Electrodynamics: The Finite- Difference Time-Domain Method, Artech House, 1995.
18. Hadi, M. F. and R. K. Dib, "Phase-matching the hybrid FV24/S22 fdtd algorithm," Progress In Electromagnetics Research, Vol. 72, 307-323, 2007.
doi:10.2528/PIER07031601