Vol. 76
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-07-11
Integral PML Absorbing Boundary Conditions for the High-Order M24 FDTD Algorithm
By
Progress In Electromagnetics Research, Vol. 76, 141-152, 2007
Abstract
This work demonstrates an efficient and simple PML absorbing boundary conditions (ABCs) implementation for the highorder extended-stencil M24 FDTD algorithm. To accomplish this objective, the integral forms of the PML split-field formulations were derived and discretized using the same M24 weighted multiple-loop approach, resulting in ABC performances that match the standard FDTD-based PML formulations. This proposed approach eliminates the impedance mismatches caused by switching from M24 to regular FDTD update equations within the PML regions and the necessary cumbersome subgridding implementations needed to minimize the effects of these mismatches. It also eliminates the need to use large separations between the scatterers and the PML regions as a simpler though more costly alternative. This achievement coupled with the recent effective resolution of the PEC modeling issue finally eliminates the last hurdles hindering the wide adoption of the M24 algorithm and its three-dimensional counterpart, the FV24 algorithm, as a viable option for accurate and computationally efficient modeling of electrically large structures.
Citation
Amal Shreim, and Mohammed Hadi, "Integral PML Absorbing Boundary Conditions for the High-Order M24 FDTD Algorithm," Progress In Electromagnetics Research, Vol. 76, 141-152, 2007.
doi:10.2528/PIER07070303
References

1. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159

2. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates," Microwave Opt. Technol. Lett., Vol. 7, No. 13, 599-604, 1994.
doi:10.1002/mop.4650071304

3. Berenger, J. P., "An effective PML for the absorption of evanescent waves in waveguides," IEEE Microwave Guided Wave Lett., Vol. 8, No. 5, 188-190, 1998.
doi:10.1109/75.668706

4. Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propagat., Vol. 43, No. 12, 1460-1463, 1995.
doi:10.1109/8.477075

5. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave Opt. Technol. Lett., Vol. 27, No. 5, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

6. Shi, Y. and C.-H. Liang, "A strongly well-posed pml with unsplitfield formulations in cylindrical and spherical coordinates," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1761-1776, 2005.
doi:10.1163/156939305775696784

7. Uduwawala, D., M. Norgren, P. Fuks, and A. Gunawardena, "A complete fdtd simulation of a real gpr antenna system operating above lossy and dispersive grounds," Progress In Electromagnetics Research, Vol. 50, 209-229, 2005.
doi:10.2528/PIER04061002

8. Ali, M. and S. Sanyal, "FDTD analysis of dipole antenna as EMI sensor," Progress In Electromagnetics Research, Vol. 69, 341-359, 2007.
doi:10.2528/PIER06122801

9. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-d buried objects using parallel genetic algorithm combined with fdtd technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264

10. Golestani-Rad, L., J. Rashad-Mohassel, and M.-M. Danaie, "Rigorous analysis of em-wave penetration into a typical room using fdtd method: The transfer function concept," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 913-926, 2006.
doi:10.1163/156939306776149851

11. Roberts, A. R. and J. Joubert, "PML absorbing boundary condition for higher-order FDTD schemes," Electron. Lett., Vol. 33, No. 1, 32-34, 1997.
doi:10.1049/el:19970062

12. Kantartzis, N. V. and T. D. Tsiboukis, "A higher-order FDTD technique for the implementation of enhanced dispersionless perfectly matched layers combined with efficient absorbing boundary conditions," IEEE Transactions on Magnetics, Vol. 34, No. 5, 2736-2739, 1998.
doi:10.1109/20.717635

13. Fang, J., "Time domain finite difference computation for Maxwell's equations," Ph.D. dissertation, 1989.

14. Hadi, M. F. and M. Piket-May, "A modified FDTD (2,4) scheme for modeling electrically large structures with high-phase accuracy," IEEE Trans. Antennas Propagat., Vol. 45, No. 2, 254-264, 1997.
doi:10.1109/8.560344

15. Hadi, M. F. and R. K. Dib, "Phase-matching the hybrid m24/s22 fdtd algorithm," in 23rd International Review of Progress in Applied Computational Electromagnetics, No. 3, 463-469, 2007.

16. Holland, R., L. Simpson, and K. Kunz, "Finite-difference analysis of EMP coupling to lossy dielectric structures," IEEE Trans. Electromagn. Compat., Vol. EMC-22, No. 3, 203-209, 1980.
doi:10.1109/TEMC.1980.303880

17. Taflove, A., Computational Electrodynamics: The Finite- Difference Time-Domain Method, Artech House, 1995.

18. Hadi, M. F. and R. K. Dib, "Phase-matching the hybrid FV24/S22 fdtd algorithm," Progress In Electromagnetics Research, Vol. 72, 307-323, 2007.
doi:10.2528/PIER07031601