1. O’Mahony, M. J., "Semiconductor laser amplifiers for use in future fiber systems," J. Lightwave Technol., Vol. 6, No. 4, 4531-4544, 1988.
doi:10.1109/50.4035
2. Olsson, N. A., "Lightwave systems with optical amplifiers," J. Lightwave Technolo., Vol. 7, No. 7, 1071-1092, 1989.
doi:10.1109/50.29634
3. Stubkjaer, K. E., et al. "Wavelength conversion devices and techniques," Proc. 22nd Eur. Conf. Optical Communication, No. 9, 33-4, 1996.
4. Jennen, J.G.L.R.C.J.Smets, H.de Waardt, G.N.v an den Hoven, and A.J.Bo ot, "4 × 10 Gbit/s NRZ transmission in the 1310nm window over 80 km of standard signal mode fiber using semiconductor optical amplifiers," Proc. 24th Eur. Conf. Optical Communication, 235-236, 1998.
5. Boscolo, S., S.K.Thritsyn, R.Bham ber, V.K.Mezen tsev, and S.V.Grigory an, "Feasibility of soliton-like DPSK transmission at 40 Gb/s with in-line semiconductor optical amplifier," IEEE Photo. Technol. Lett., Vol. 18, No. 3, 490-492, 2006.
doi:10.1109/LPT.2005.863634
6. Ciaramella, E., A.D'Errico, R.Proietti, and G.Con testabile, "WDM-POLSK transmission systems by using semiconductor optical amplifiers," J. Lightwave Technol., Vol. 24, No. 11, 4039-4046, 2006.
doi:10.1109/JLT.2006.884185
7. Keating, A.J.and D.D.Sampson, "Reduction of excess intensity noise in spectrum-sliced incoherentlight for WDM applications," J. Lightwave Technol., Vol. 15, No. 1, 53-61, 1997.
doi:10.1109/50.552113
8. Han, J. H., J. W. Ko, J. S. Lee, and S. Y. Shin, "0.1-nm narrow bandwidth transmission of a 2.5 Gb/s spectrum-sliced incoherent light channel using an all-optical bandwidth expansion technique at the receiver," IEEE Photon. Technol. Lett., Vol. 10, No. 10, 1501-1503, 1998.
doi:10.1109/68.720308
9. Koyama, F.T. Yamatoya, and K. Iga, "Highly gain-saturated GaInAsP/InP SOA modulator for incoherent spectrum-sliced light sources," Conf. Indium Phosphide and Related Materials, 439-442, 2000.
10. Zhao, M., G.Morthier, and R.Baets, "Analysis and optimization of intensity noise reduction in spectrum-sliced WDM systems using a saturated semiconductor optical amplifier," IEEE Photon. Technol. Lett., Vol. 14, No. 3, 390-392, 2002.
doi:10.1109/68.986823
11. Healey, P., P.T ownsend, C.F ord, L.Johnston, P.T ownley, I.Lealman, L.Riv ers, S.P errin, and R.Mo ore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," Electron. Lett., Vol. 37, No. 19, 1181-1182, 2001.
doi:10.1049/el:20010786
12. Phillips, I.D., P.N.Kean, N.J.Doran, I.Bennion, D.A.P attison, and A.D.Ellis, "Simultaneous clock recovery and data regeneration using a nonlinearoptical loop mirror as an all-optical mixer," Optical Fiber Communication Conf., 273-274, 1997.
doi:10.1109/OFC.1997.719883
13. Lee, J.H., T.Kogure, and D.J.Ric hardson, "Wavelength tunable 10-GHz 3-ps pulse source using a dispersion decreasing fiberbased nonlinear optical loop mirror," IEEE J. Selected Topics in Quantum Electron., Vol. 10, No. 1, 181-185, 2004.
doi:10.1109/JSTQE.2003.822911
14. Yu, J., A.Clausen, H.N.P oulsen, P.Jepp esen, X.Zheng, and C.P eucheret, "40 Gb/s wavelength conversion in a cascade of a SOA and a NOLM and demonstration of extinction ratio improvement," Electron. Lett., Vol. 36, No. 11, 963-964, 2000.
doi:10.1049/el:20000710
15. Wai, P.K.A.and W.Cao, "Simultaneous amplification and compression of ultrashort fundamental solitons in an erbiumdoped nonlinear amplifying fiber loop mirror," IEEE J. Quantum Electron., Vol. 39, No. 4, 555-561, 2003.
doi:10.1109/JQE.2003.809327
16. Willner, A.E. and and W. Shieh, "Optical spectral and power parameters for all-optical wavelength shifting single stage, fanout, and cascadability," J. Lightwave Technol., Vol. 13, No. 5, 771-781, 1995.
doi:10.1109/50.923474
17. Yu, J. and and P. Jeppesen, "Improvement of cascaded semiconductor optical amplifier gates by using holding light injection," J. Lightwave Technol., Vol. 19, No. 5, 614-623, 2001.
doi:10.1109/50.923474
18. Mathlouthi, W., P.Lemieux, M.Salsi, A.V annucci, A.Bononi, and L.A.Rusc h, "Fast and efficient dynamic WDM semiconductor optical amplifier model," J. Lightwave Technol., Vol. 24, No. 11, 4356-4365, 2006.
doi:10.1109/JLT.2006.884217
19. Matsumoto, A., K.Nishim ura, K.Utak a, and M.Usami, "Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using crossphase modulation," IEEE J. Quantum Electron., Vol. 42, No. 3, 313-323, 2006.
doi:10.1109/JQE.2006.869809
20. Ye, Y., X.Zheng, H.Zhang, Y.Li, and Y.Guo, "Theoretical study on wavelength conversion based on cross phase modulation using semiconductor optical amplifiers," J. Infrared and Millmeter Waves, Vol. 22, No. 12, 1785-1792, 2002.
doi:10.1023/A:1015071416840
21. Agrawal, G.P . and and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifers," IEEE J. Quantum Electron, Vol. 25, No. 11, 832297-2306, 1989.
doi:10.1109/3.42059
22. Agrawal, G. P., Nonlinear Fiber Optics, Academic, 1995.
23. Biswas, A. and and S. Konar, "Theory of dispersion-managed optical solitons," Progress In Electromagnetics Research, Vol. PIER 50, 83-134, 2005.
doi:10.2528/PIER04051301
24. Shwetanshumala, A. Biswas, and S. Konar, "Dynamically stable super Gaussian solitons in semiconductor doped glass fibers," J. of Electromagn. Waves and Appl., Vol. 20, No. 7, 901-912, 2006.
doi:10.1163/156939306776149888
25. Crutcher, S., A. Biswas, M. D. Aggarwal, and M. E. Edwards, "“Oscillatory behavior of spatial solitons in two-dimensional waveguides and stationary temporal power law solitons in optical fibers," J. of Electromagn. Waves and Appl., Vol. 20, No. 7, 927-939, 2006.
doi:10.1163/156939306776149833
27. Kung, F. and H. T. Chuah, "A finite-difference time-domain (FDTD) software for simulation of printed circuit board (PCB) assembly," Progress In Electromagnetics Research, Vol. 50, 299-335, 2005.
doi:10.2528/PIER04071401
28. Gong, Z. Q. and G. Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
doi:10.2528/PIER06071301
29. Chen, X., D.Liang, and K.Huang, "Micro wave imaging 3-D buried objects using parallel genetic algorithm combined with FDTD technique," J. of Electromagn. Waves and Appl., Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264