Vol. 71
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-03-18
On Uniqueness and Continuity for the Quasi-Linear, Bianisotropic Maxwell Equations, Using an Entropy Condition
By
Progress In Electromagnetics Research, Vol. 71, 317-339, 2007
Abstract
The quasi-linear Maxwell equations describing electromagnetic wave propagation in nonlinear media permit several weak solutions, which may be discontinuous (shock waves). It is often conjectured that the solutions are unique if they satisfy an additional entropy condition. The entropy condition states that the energy contained in the electromagnetic fields is irreversibly dissipated to other energy forms, which are not described by the Maxwell equations. We use the method employed by Krûzkov to scalar conservation laws to analyze the implications of this additional condition in the electromagnetic case, i.e., systems of equations in three dimensions. It is shown that if a cubic term can be ignored, the solutions are unique and depend continuously on given data.
Citation
Daniel Sjöberg, "On Uniqueness and Continuity for the Quasi-Linear, Bianisotropic Maxwell Equations, Using an Entropy Condition," Progress In Electromagnetics Research, Vol. 71, 317-339, 2007.
doi:10.2528/PIER07030804
References

1. Bloom, F., Mathematical Problems of Classical Nonlinear Electromagnetic Theory, Longman Scientific & Technical, 1993.

2. Coleman, B. D., "B. D. and E. H. Dill. Thermodynamic restrictions on the constitutive equations of electromagnetic theory," Z. Angew. Math. Phys., Vol. 22, 691-702, 1971.
doi:10.1007/BF01587765

3. Courant, R. and K. O. Friedrichs, Supersonic Flow and Shock Waves, Springer-Verlag, 1948.

4. Dafermos, C. M., "The entropy rate admissibility criteria for solutions of hyperbolic conservation laws," Journal of Differential Equations, Vol. 14, 202-212, 1973.
doi:10.1016/0022-0396(73)90043-0

5. Dafermos, C. M., Hyperbolic Conservation Laws in Continuum Physics, 325, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, 2000.

6. Evans, L. C., Partial Differential Equations, American Mathematical Society, 1998.

7. Godlewski, E. and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer-Verlag, 1996.

8. Gustafsson, M., "Wave splitting in direct and inverse scattering problems," Ph.D. thesis, 2000.

9. Hadamard, J., Lectures on the Cauchy Problem in Linear Partial Differential Equations, Yale University Press, 1923.

10. Hopf, E., "The partial differential equation ut + uux = μuxx," Comm. Pure Appl. Math., Vol. 3, 201-230, 1950.
doi:10.1002/cpa.3160030302

11. Hörmander, L., The Analysis of Linear Partial Differential Operators I, Grundlehren der mathematischen Wissenschaften 256, Springer-Verlag, 1983.

12. Hörmander, L., Lectures on Nonlinear Hyperbolic Differential Equations, Number 26 in Mathemathiques & Applications, Springer-Verlag, 1997.

13. Jackson, J. D., Classical Electrodynamics, 3rd Ed., John Wiley & Sons, 1999.

14. Jouguet, E., "Sur la propagation des discontinuites dans les fluides," C. R. Acad. Sci., Vol. 132, 673-676, 1901.

15. Kreiss, H.-O. and J. Lorenz, Initial-Boundary Value Problems and the Navier-Stokes Equations, Academic Press, 1989.

16. Kristensson, G. and D. J. N. Wall, "Direct and inverse scattering for transient electromagnetic waves in nonlinear media," Inverse Problems, Vol. 14, 113-137, 1998.
doi:10.1088/0266-5611/14/1/011

17. Kržkov, S., "First order quasilinear equations with several space variables," Math. USSR Sbornik, Vol. 10, 217-273, 1970.
doi:10.1070/SM1970v010n02ABEH002156

18. Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskiǐ, Electrodynamics of Continuous Media, 2nd Ed., Pergamon, 1984.

19. Lax, P. D., "Shock waves and entropy," Contributions to Nonlinear Functional Analysis, 603-634, 1971.

20. Lax, P. D., "Hyperbolic systems of conservation laws and the mathematical theory of shock waves," Conf. Board. Math. Sci. Regional Conference Series in Applied Mathematics 11, 1973.

21. Lindell, I. V., A. H. Sihvola, and K. Suchy, "Six-vector formalism in electromagnetics of bi-anisotropic media," J. Electro. Waves Applic., Vol. 9, No. 7/8, 887-903, 1995.

22. Liu, T.-P., "The entropy condition and the admissibility of shocks," J. Math. Anal. Appl., Vol. 53, 78-88, 1976.
doi:10.1016/0022-247X(76)90146-3

23. Maugin, G. A., "On shock waves and phase-transition fronts in continua," ARI, Vol. 50, 141-150, 1998.

24. Maugin, G. A., "On the universality of the thermomechanics of forces driving singular sets," Archive of Applied Mechanics, Vol. 70, 31-45, 2000.

25. Oleǐnik, O. A., "Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation," Amer. Math. Soc. Transl., Vol. 14, No. 2(86), 87-158, 1959.

26. Serre, D., "Systems of conservation laws, A challenge for the XXIst century," Mathematics Unlimited - 2001 and Beyond, 1061-1080, 2001.

27. Sjöberg, D., "Reconstruction of nonlinear material properties for homogeneous, isotropic slabs using electromagnetic waves," Inverse Problems, Vol. 15, No. 2, 431-444, 1999.
doi:10.1088/0266-5611/15/2/006

28. Sjöberg, D., "Simple wave solutions for the Maxwell equations in bianisotropic, nonlinear media, with application to oblique incidence," Wave Motion, Vol. 32, No. 3, 217-232, 2000.
doi:10.1016/S0165-2125(00)00039-1

29. Styer, D. F., "Insight into entropy," Am. J. Phys, Vol. 68, No. 12, 1090-1096, 2000.
doi:10.1119/1.1287353

30. Taylor, M., Partial Differential Equations III, Nonlinear Equations, 1996.

31. Åberg, I., "High-frequency switching and Kerr effect — Nonlinear problems solved with nonstationary time domain techniques," Progress In Electromagnetics Research, Vol. 17, 185-235, 1997.
doi:10.2528/PIER97021200

32. Kung, F. and H. T. Chuah, "Stability of classical finite-difference time-domain (FDTD) formulation with nonlinear elements — A new perspective," Progress In Electromagnetics Research, Vol. 42, 49-89, 2003.
doi:10.2528/PIER03010901

33. Makeeva, G. S., O. A. Golovanov, and M. Pardavi-Horvath, "Mathematical modeling of nonlinear waves and oscillations in gyromagnetic structures by bifurcation theory methods," J. of Electromagn. Waves and Appl., Vol. 20, No. 11, 1503-1510, 2006.
doi:10.1163/156939306779274363

34. Norgren, M. and S. He, "Effective boundary conditions for a 2D inhomogeneous nonlinear thin layer coated on a metallic surface," Progress In Electromagnetics Research, Vol. 23, 301-314, 1999.
doi:10.2528/PIER99020206