Vol. 72
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-03-22
Fast Multipole Accelerated Scattering Matrix Method for Multiple Scattering of a Large Number of Cylinders
By
Progress In Electromagnetics Research, Vol. 72, 105-126, 2007
Abstract
The lowering and raising operators of cylindrical harmonics are used to derive the general fast multipole expressions of arbitrary order Hankel functions. These expressions are then employed to transform the dense matrix in the scattering matrix method (SMM) into a combination of sparse matrices (aggregation, translation and disaggregation matrices). The novel method is referred to as fast multipole accelerated scattering matrix method (FMA-SMM). Theoretical study shows FMA-SMM has lower complexity O(N1.5) instead of SMM's O(N2), where N stands for total harmonics number used. An empirical formula is derived to relate the minimum group size in FMA-SMM to the highest order Hankel functions involved. The various implementation parameters are carefully investigated to guarantee the algorithm's accuracy and efficiency. The impact of the cylinders density on convergence rate of iterative solvers (BiCGStab(2) here), memory cost as well as CPU time is also investigated. Up to thousands of cylinders can be easily simulated and potential applications in photonic crystal devices are illustrated.
Citation
Yao Jiang Zhang, and Er Ping Li, "Fast Multipole Accelerated Scattering Matrix Method for Multiple Scattering of a Large Number of Cylinders," Progress In Electromagnetics Research, Vol. 72, 105-126, 2007.
doi:10.2528/PIER07030503
References

1. Foldy, L. L., "The multiple scattering of waves I. General theory of isotropic scattering by randomly distributed scatterers," Phys. Rev., Vol. 67, No. 2, 107-119, 1945.
doi:10.1103/PhysRev.67.107

2. Lax, M., "Multiple scattering of waves," Rev. Mod. Phys., Vol. 23, No. 10, 287-310, 1951.
doi:10.1103/RevModPhys.23.287

3. Twersky, V., "Multiple scattering of radiation by an arbitrary configuration of parallel cylinders," J. Acoust. Soc. Am, Vol. 24, No. 1, 42-46, 1952.
doi:10.1121/1.1906845

4. Waterman, P. C., "New formulation of acoustic scattering," J. Acoust. Soc. Am., Vol. 45, No. 6, 1417-1429, 1969.
doi:10.1121/1.1911619

5. Waterman, P. C., "Symmetry, unitarity, and geometry in electromagnetic scattering," Phys. Rev. D, Vol. 3, No. 2, 825-829, 1971.
doi:10.1103/PhysRevD.3.825

6. Peterson, B. and S. Ström, "T-matrix for electromagnetic scattering from an arbitrary number of scatterers and representation of E(3)," Phys. Rev. D, Vol. 8, No. 11, 3661-3678, 1973.
doi:10.1103/PhysRevD.8.3661

7. Chew, W. C., C. C. Lu, and Y. M. Wang, "Efficient computation of three-dimensional scattering of vector electromagnetic waves," J. Opt. Soc. Am. A, Vol. 11, No. 4, 1528-1537, 1994.

8. Tayeb, G. and D. Maystre, "Rigorous theoretical study of finitesize two-dimensional photonic crystals doped by microcavities," J. Opt. Soc. Am. A, Vol. 14, No. 12, 3323-3332, 1997.

9. Yonekura, J., M. Ikeda, and T. Baba, "Analysis of finite 2- D photonic crystals of columns and lightwave devices using the scattering matrix method," J. Lightwave Tech., Vol. 17, No. 8, 1500-1508, 1999.
doi:10.1109/50.779177

10. Li, E. P., Q. X. Wang, Y. J. Zhang, and B. L. Ooi, "Analysis of finite-size coated electromagnetic bandgap structure by an efficient scattering matrix method," IEEE J. Selected Topics Quantum Elect., Vol. 11, No. 4, 485-492, 2005.
doi:10.1109/JSTQE.2005.845619

11. Kuo, C.-H. and Z. Ye, "Negative-refraction like behavior revealed by arrays of dielectric cylinders," Phys. Rev. E, Vol. 70, 026608, 2004.
doi:10.1103/PhysRevE.70.026608

12. Shooshtari, A. and A. R. Sebak, "Electromagnetic scattering by parallel metamaterial cylinders," Progress In Electromagnetics Research, Vol. 57, 165-177, 2006.
doi:10.2528/PIER05071103

13. Boscolo, S. and M. Midrio, "Three-dimensional multiplescattering technique for the analysis of photonic-crystal slabs," J. Lightwave Tech., Vol. 22, No. 12, 2778-2786, 2004.
doi:10.1109/JLT.2004.833276

14. Talebi, N., M. Shahabadi, and C. Hafner, "Analysis of a lossy microring using the generalized multipole technique," Progress In Electromagnetics Research, Vol. 66, 287-299, 2006.
doi:10.2528/PIER06112801

15. Koc, S. and W. C. Chew, "Calculation of acoustical scattering from a cluster of scatterers," J. Acoust. Soc. Am, Vol. 103, No. 2, 721-734, 1998.
doi:10.1121/1.421231

16. Gumerov, N. A. and R. Duraiswami, "Computation of scattering from clusters of spheres using the fast multipole method," J. Acoust. Soc. Am, Vol. 117, No. 4, 1744-1761, 2005.
doi:10.1121/1.1853017

17. Cheng, H., W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J. F. Ethridge, J. Huang, V. Rokhlin, N. Yarvin, and J. Zhao, "A wideband fast multipole method for the Helmholtz equation in three dimensions," J. Comput. Phys., Vol. 216, No. 7, 300-325, 2006.
doi:10.1016/j.jcp.2005.12.001

18. Gumerov, N. A. and R. Duraiswami, Fast Multipol Methods for the Helmholtz Equation in Three Dimensions, Elsevier Ltd., 2004.

19. Rokhlin, V., "Rapid solution of integral equations of scattering theory in two dimensions," J. Comput. Phys., Vol. 86, No. 2, 414-439, 1990.
doi:10.1016/0021-9991(90)90107-C

20. Engheta, N., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, "The fast multipole method (FMM) for electomagnetic scattering problems," IEEE Trans. Antennas Propagat., Vol. 40, No. 6, 634-641, 1992.
doi:10.1109/8.144597

21. Lu, C. C. and W. C. Chew, "Fast algorithm for solving hybrid integral equations," IEE Proc.-H, Vol. 140, No. 12, 455-460, 1993.

22. Chew, W. C., J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.

23. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1990.

24. Van der Vorst, H. A., "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems," SIAM J. Sci. Stat. Comput., Vol. 13, 631-644, 1992.
doi:10.1137/0913035

25. Ohnuki, S. and W. C. Chew, "Numerical accuracy of multipole expansion for 2-D MLFMA," IEEE Trans. Antennas Propagat., Vol. 51, No. 8, 1883-1890, 2003.
doi:10.1109/TAP.2003.815425

26. Felbacq, D., G. Tayeb, and D. Maystre, "Scattering by a random set of parallel cylinders," J. Opt. Soc. Am. A, Vol. 11, No. 9, 2526-2538, 1994.

27. Elsherbeni, A. Z. and M. Hamid, "Scattering by parallel conducting circular cylinders," IEEE Trans. Antennas Propagat., Vol. AP-35, No. 3, 355-358, 1987.
doi:10.1109/TAP.1987.1144098

28. Ragheb, H. A. and M. Hamid, "Simulation of a cylindrical reflector by conducting circular cylinders," IEEE Trans. Antennas Propagat., Vol. AP-35, No. 3, 349-353, 1987.
doi:10.1109/TAP.1987.1144096

29. Liu, T., A. R. Zakharian, M. Fallahi, V. Moloney, and M. Mansuripur, "Multimode Interference-based photonic crystal waveguide power splitter," J. Lightwave Tech., Vol. 22, No. 12, 2842-2846, 2004.
doi:10.1109/JLT.2004.834479