Vol. 72
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-03-22
Design and Analysis of a Low-Frequency Radio Telescope for Jovian Radio Emission
By
Progress In Electromagnetics Research, Vol. 72, 127-143, 2007
Abstract
It is well known that planet Jupiter produces strong radio bursts at decametric wavelengths from regions of temporary radio emission in its magnetosphere. Like the man made radio signals, these signals do interfere in the low frequency radio telescope data while observing a different extraterrestrial source. Identification and characterization of this interfering signal is important in radio astronomy. In most of the radio astronomy sites, spectrum monitoring stations are available for such purposes. These instruments record any strong signal within the band and also aim to locate its position. Depending on the properties of different categories of sources, special modules can be attached to these instruments for obtaining a more detailed picture. These modules can be added at the front end of the instrument using a selector switch and can be connected whenever necessary. Construction of one such module for capturing and recording the Jupiter radio bursts has been described with all the engineering details. It consists of an antenna system followed a receiver (connected to a spectrum recorder). An improvement in the antenna system has been made as compared to the contemporarily available single antenna Jupiter radio telescopes, thereby enabling to record the radio emissions over a larger period using a fixed beam. The receiver system has been designed to process the low frequency Jovian signals from 18 to 25 MHz. The back end is that of a spectrum monitoring system which serves as an automated data analyzer and recorder. It offers flexibility and various setup choices to the user. The mathematical analysis of the instrument and computed system characteristics have been produced in detail for ease of reproductions, direct use in radio astronomy and future design developments.
Citation
Shubhendu Joardar, and Ashit Bhattacharya, "Design and Analysis of a Low-Frequency Radio Telescope for Jovian Radio Emission," Progress In Electromagnetics Research, Vol. 72, 127-143, 2007.
doi:10.2528/PIER07021901
References

1. Joardar, S. and A. B. Bhattacharya, "Simultaneous resolving of frequency separated narrow band terrestrial radio sources by multi antenna spectrum monitoring systems assisting radio astronomy," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 9, 1195-1209, 2006.
doi:10.1163/156939306777442971

2. Joardar, S. and A. B. Bhattacharya, "Algorithms for categoric analysis of interference in low frequency radio astronomy," Journal of Electromagn. Waves and Applications, Vol. 21, No. 4, 441-456, 2007.

3. Burke, B. F. and K. L. Franklin, "Observations of a variable radio source associated with the planet Jupiter," Journal of Geophysical Research, Vol. 60, 1955.

4. Kraus, J. D., "Planetary and solar radio emission at 11 meters wavelength," Proceedings of the IRE, Vol. 46, 266-274, 1958.

5. Lecacheux, A., M. Y. Boudjada, H. O. Rucker, J. L. Bougeret, R. Manning, and M. L. Kaiser, "Jovian decametric emissions observed by the Wind/WAVES radioastronomy experiment," Astronomy and Astrophysics, Vol. 329, 776-784, 1998.

6. Oueinnec, J. and P. Zarka, "Io-controlled decameter arcs and Io- Jupiter interaction," Journal of Geophysical Research, Vol. 103, 26649-26666, 1998.
doi:10.1029/98JA02435

7. Anastassiades, M., D. Ilias, and E. Tsagakis, "On ionospheric disturbances caused by the solar activity of November 1960," Pure and Applied Geophysics, Vol. 51, No. 1, 142-146, 1962.

8. Zarka, P., "Fast radio imaging of Jupiter's magnetosphere at lowfrequencies with LOFAR," Planetary and Space Science, Vol. 52, 1455-1467, 2004.
doi:10.1016/j.pss.2004.09.017

9. Uduwawala, D., M. Norgren, and P. Fuks, "A complete FDTD simulation of a real GPR antenna system operating above lossy and dispersive grounds," Progress In Electromagnetics Research, Vol. 50, 209-229, 2005.
doi:10.2528/PIER04061002

10. Papakanellos, P. J., I. I. Heretakis, P. K. Varlamos, and C. N. Capsalis, "A combined method of auxiliary sources-reaction matching approach for analyzing moderately large-scale arrays of cylindrical dipoles," Progress In Electromagnetics Research, Vol. 59, 51-67, 2006.
doi:10.2528/PIER05091501

11. Kraus, J. D., R. J. Marhefka, et al. Antennas for All Applications, Tata McGraw-Hill, 2003.

12. Makarov, S. N., Antennas and EM modeling with MATLAB, John Willy and Sons, 2002.

13. Birney, D. S., Observational Astronomy, Cambridge University Press, 1991.

14. Chan, Y. K., B. K. Chung, and H. T. Chuah, "Transmitter and receiver design of an experimental airborne synthetic aperture RADAR sensor," Progress In Electromagnetics Research, Vol. 49, 203-218, 2004.
doi:10.2528/PIER04031601

15. Packard, H., Spectrum Analysis: Application Note 150, Hewlet Packard Company, 1989.

16. Roger, R. S., C. H. Costain, T. L. Landecker, and C. M. Swerdlyk, "The radio emission from the Galaxy," Astronomy and Astrophysics Supplement Series, 7-19, 1999.
doi:10.1051/aas:1999239