Vol. 67
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-01-11
An Efficient Algorithm for EM Scattering by Electrically Large Dielectric Objects Using Mr-Qeb Iterative Scheme and Cg-FFT Method
By
, Vol. 67, 341-355, 2007
Abstract
In this paper, an efficient algorithm is presented to analyze the electromagnetic scattering by electrically large-scale dielectric objects. The algorithm is based on the multi-region and quasiedge buffer (MR-QEB) iterative scheme and the conjugate gradient (CG) method combined with the fast Fourier transform (FFT). This algorithm is done by dividing the computational domain into small sub-regions and then solving the problem in each sub-region with buffer area using the CG-FFT method. Considering the spurious edge effects, local quasi-edge buffer regions are used to suppress these unwanted effects and ensure the stability. With the aid of the CG-FFT method, the proposed algorithm is very efficient, and can solve very largescale problems which cannot be solved using the conventional CG-FFT method in a personal computer. The accuracy and efficiency of the proposed algorithm are verified by comparing numerical results with analytical Mie-series solutions for dielectric spheres.
Citation
Lei Zhao, Tie-Jun Cui, and Wei-Dong Li, "An Efficient Algorithm for EM Scattering by Electrically Large Dielectric Objects Using Mr-Qeb Iterative Scheme and Cg-FFT Method," , Vol. 67, 341-355, 2007.
doi:10.2528/PIER06121902
References

1. Harrington, R. F., Field Computation by Moment Methods, MacMillan, 1968.

2. Goggans, P. M., A. A. Kishk, and A. W. Glisson, "Electromagnetic scattering from objects composed of multiple homogeneous regions using a region-by-region solution," IEEE Trans. Antennas Propagat., Vol. 42, 865-871, 1994.
doi:10.1109/8.301713

3. Graglia, R. D.P. L. E. Uslenghi, and R. S. Zich, "Moment method with isoparametric elements for three-dimensional anisotropic scatters," Proc. IEEE, Vol. 5, 750-760, 1989.

4. Jarem, J. M., "Method-of-moments solution of a parallel-plate waveguid aperture system," J. Appl. Phys., Vol. 59, 3566-3570, 1986.
doi:10.1063/1.336779

5. Livesay, D. E. and K. Chen, "Electromagnetic fields induced inside arbitrarily shaped biological bodies," IEEE Trans. Microwave Theory Tech., Vol. MTT-22, 1273-1282, 1974.
doi:10.1109/TMTT.1974.1128475

6. Sarkar, T. K. and E. Arvas, "An integral equation approach to the analysis of finite microstrip antennas: Volume/surface formulation," IEEE Trans. Antennas Propagat., Vol. 38, 305-312, 1990.
doi:10.1109/8.52238

7. Doncker, P. D., "A potential integral equations method for electromagnetic scattering by penetrable bodies," IEEE Trans. Antennas Propagat., Vol. 49, 1037-1042, 2001.
doi:10.1109/8.933483

8. Smith, B., P. Bjorstad, and W. Gropp, Domain Decomposition Parallel Multilevel Methods for Elliptic Partial Differential Equation, Cambridge Univ. Press, 1996.

9. Wohlmuth, B. I., Discretization Methods and Iterative Solvers Based on Domain Decomposition, Springer-Verlag, 2001.

10. Pavarino, L. F. and A. Toselli, Recent Developments in Domain Decomposition Methods, Springer-Verlag, 2002.

11. Vouvakis, M. N., Z. Cendes, and J. F. Lee, "A FEM domain decomposition mehtod for photonic and electromagentic band gap structures," IEEE Trans. Antennas Propagat., Vol. 54, 721-733, 2006.
doi:10.1109/TAP.2005.863095

12. Sharkawy, M. A., V. Demir, and A. Z. Elsherbeni, "The iterative multi-region algorithm using a hybrid finite difference frequency domain and method of moments techniques," Progress In Electromagnetics Research, Vol. 57, 19-32, 2006.
doi:10.2528/PIER05071001

13. Catedra, M. F., E. Gago, and L. Nuno, "A numerical scheme to obtain the rcs of three dimension bodies of size using the conjugate gradient method and fast fourier transform," IEEE Trans. Antennas Propagat., Vol. 5, 528-537, 1989.
doi:10.1109/8.24180

14. Shen, C. Y., K. J. Glover, M. I. Sancer, and A. D. Varvatsis, "The discrete fourier transform method of solving differential-integral equations in scattering theory," IEEE Trans. Antennas Propagat., Vol. 8, 1032-1041, 1989.
doi:10.1109/8.34141

15. Zwamborn, P. and P. M. van den Berg, "The three-dimensional weak form of the conjugate gradient FFT method for solving scattering problems," IEEE. Trans. Microwace Theory Tech., Vol. 9, No. 40, 1757-1766, 1992.
doi:10.1109/22.156602

16. Gan, H. and W. C. Chew, "A discrete BCG-FFT algorithm for solving 3D inhomogeneous scatterer problems," J. Electromagn. Waves Applicat., Vol. 9, 1339-1357, 1995.

17. Cui, T. J. and W. C. Chew, "Fast algorithm for electromagnetic scattering by buried 3D dielectric objects of large size," IEEE Trans. Geosci. Remote Sensing, Vol. 37, 2597-2608, 1999.
doi:10.1109/36.789654

18. Weaver, J., Applications of Discrete and Continuous Fourier Analysis, Wiley, 1983.

19. Cui, T. J., W. C. Chew, A. A. Aydiner, and Y. H. Zhang, "Fastforward solvers for the low-frequency detection of buried dielectric objects," IEEE Trans. Geosci. Remote Sensing, Vol. 41, 2026-2036, 2003.
doi:10.1109/TGRS.2003.813502

20. Millard, X. and Q. H. Liu, "A fast volume integral equation solver for electromagnetic scattering from large inhomogeneous objects in planarly layered media," IEEE Trans. Antennas Propagat., Vol. 51, 2393-2401, 2003.
doi:10.1109/TAP.2003.816311

21. Peters, T. J. and J. L. Volakis, "Application of a conjugate gradient FFT method to scattering from thin planar material plates," IEEE Trans. Antennas Propagat., Vol. 36, 518-526, 1988.
doi:10.1109/8.1141

22. Brennan, C., P. Cullen, and M. Condon, "A novel iterative solution of the three dimensional electric field integral equation," IEEE Trans. Antennas Propagat., Vol. 52, 2781-2784, 2004.
doi:10.1109/TAP.2004.834405

23. Li, W. D., W. Hong, and H. X. Zhou, "Integral equation based overlapped domain decomposition method (IE-ODDM) for the analysis of electromagnetic scattering of 3-D conduction objects," Micro. Opt. Tech. Lett., Vol. 49, 265-274, 2007.
doi:10.1002/mop.22110

24. Wan, J. X. and C.-H. Liang, "A fast analysis of scattering from microstrip antennas over a wide band," Progress In Electromagnetics Research, Vol. 50, 187-208, 2005.
doi:10.2528/PIER04052801

25. Wang, S., X. Guan, D.Wang, X. Ma, and Y. Su, "Electromagnetic scattering by mixed conducting/dielectric objects using higherorder MoM," Progress In Electromagnetics Research, Vol. 66, 51-63, 2006.
doi:10.2528/PIER06092101

26. Li, M.-K. and W. C. Chew, "Applying divergence-free condition in solving the volume integral equation," Progress In Electromagnetics Research, Vol. 57, 311-333, 2006.
doi:10.2528/PIER05061303