Vol. 69
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-12-26
An Unconditionally Stable Precise Integration Time Domain Method for the Numerical Solution of Maxwell's Equations in Circular Cylindrical Coordinates
By
Progress In Electromagnetics Research, Vol. 69, 201-217, 2007
Abstract
The extension of an unconditionally stable precise integration time domain method for the numerical solutions of Maxwell's equations to circular cylindrical coordinate system is presented in this paper. In contrast with the conventional cylindrical finite-difference time-domain method, not only can it remove the Courant stability condition constraint, but also make the numerical dispersion independent of the time-step size. Moreover, the first-order absorbing boundary condition can be introduced into the proposed method successfully, whereas the alternating-direction-implicit finitedifference time-domain method may become instable for open region radiation problems terminated with absorbing boundary conditions. Theoretical proof of the unconditional stability is mentioned and the numerical results are presented to demonstrate the effectiveness of the proposed method in solving electromagnetic-field problem.
Citation
Xin-Tai Zhao, Xi-Kui Ma, and Yan-Zhen Zhao, "An Unconditionally Stable Precise Integration Time Domain Method for the Numerical Solution of Maxwell's Equations in Circular Cylindrical Coordinates," Progress In Electromagnetics Research, Vol. 69, 201-217, 2007.
doi:10.2528/PIER06120505
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

2. Gong, Z. and G.-Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
doi:10.2528/PIER06071301

3. Gao, S., L.-W. Li, and A. Sambell, "FDTD analysis of a dualfrequency microstrip patch antenna," Progress In Electromagnetics Research, Vol. 54, 155-178, 2005.
doi:10.2528/PIER04120102

4. Young, J. L. and R. Adams, "Excitation and detection of waves in the fdtd analysis of n-port networks," Progress In Electromagnetics Research, Vol. 53, 249-269, 2005.
doi:10.2528/PIER04100701

5. Chen, X., K. Huang, and X.-B. Xu, "Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with fdtd method," Progress In Electromagnetics Research, Vol. 53, 283-298, 2005.
doi:10.2528/PIER04102902

6. Taflove, A., Computational Electromagnetics: The Finite- Difference Time-Domain Method, 637, 1996.

7. Dib, N., T. Weller, and M. Scardelletti, "Analysis of 3- D cylindrical structures using the finite-difference time-domain method," IEEE MTT-SInt. Microwave symp. Dig., 925-928, 1998.

8. Chen, Y., R. Mittra, and P. Harms, "Finite-difference timedomain algorithem for solving Maxwell's equations in rotationally symmetric geometries," IEEE Trans. Microwave Theory and Techniques, Vol. 44, 832-839, 1996.
doi:10.1109/22.506441

9. Zheng, F. H., Z. Z. Chen, and J. Z. Zhang, "A finite-difference time-domain method without the Courant stability conditions," IEEE Microwave and Guided Wave Letters, Vol. 9, 441-443, 1999.
doi:10.1109/75.808026

10. Namiki, T., "A new FDTD algorithm based on alternating direction implicit method," IEEE Trans. Microwave Theory and Techniques, Vol. 47, 2003-2007, 1999.
doi:10.1109/22.795075

11. Zhen, F. H. and Z. Z. Chen, "Numerical dispersion analysis of the unconditionally stable 3-D ADI-FDTD method," IEEE Trans. Microwave Theory and Techniques, Vol. 49, 1006-1009, 2001.
doi:10.1109/22.920165

12. Kermani, M. H., X.Wu, and O. M. Ramahi, "Instable ADI-FDTD open-region simulation," IEEE A P-SInt. Symp., Vol. 1, 595-598, 2004.

13. Kermani, M. H. and O. M. Ramahir, "Instable 3D ADI-FDTD open-region simulation," IEEE A P-SInt. Symp., Vol. 1B, 142-145, 2005.

14. Zhao, J. Q., X. K. Ma, Y. P. Li, and G. Y. Qiu, "Analysis of the electromagnetic transient of multiphase transmission lines by the precise integration method," Journal of High-Voltage Technology, Vol. 27, 3-4, 2001.

15. Tang, M. and X. K. Ma, "A precise integration algorithm for transient simulation of interconnects in high-speed VLSI," Journal of Electronics, Vol. 32, 787-790, 2004.

16. Yang, M. and X. K. Ma, "A semi-integral method for the calculation of electromagnetic pulse propagation in ferromagnetic sheet," Transactions of China Electrotechnical Society, Vol. 20, 89-94, 2006.

17. Zhao, X. T. and X. K. Ma, "An unconditionally stable time domain method based on precise integration," Record of the 15th COMPUMAG CONFERENCE on the Computation of Electromagnetic Field, 26-30, 2005.

18. Ma, X. K., X. T. Zhao, and Y. Z. Zhao, "A 3-D precise integration time-domain method without the restraints of the Courant- Friedrich-Levy stability condition for the numerical solution of Maxwell's equations," IEEE Trans. Microwave Theory and Techniques, Vol. 54, 3026-3037, 2006.
doi:10.1109/TMTT.2006.877427

19. Ge, D. B. and Y. B. Yan, The Finite Difference Time Domain Method for Electromagnetic Wave, 169-173, 169-173, 2002.

20. Zhong, W. X. and F. W. Williams, "A precise time-step integration method," Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, Vol. 208, 427-430, 1994.

21. Pozar, D. M., Microwave Engineering, 350, 1990.