Vol. 61
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-05-20
Design of an Active Integrated Antenna for a Pcmcia Card
By
Progress In Electromagnetics Research, Vol. 61, 253-270, 2006
Abstract
This paper presents the design and implementation of an Active Integrated Antenna (AIA) using a Voltage Controlled Oscillator (VCO) for applications in the Industrial Scientific Medical band (2.4 ÷ 2.4835 GHz). Surface Mounting Device (SMD) technology has been applied in the realization of the passive and active components, and low cost FR-4 dielectric slabs have been employed for the integration of the antenna and the active/transmissive circuits, residing, respectively, on the opposite faces of a Personal Computer Memory Card International Association (PCMCIA) card. The proposed layout makes use of a properly corrugated ground plane, i.e., a High Impedance Ground Plane (HIGP), to improve the antenna performances and to minimize the coupling between the radiating component and other possible radiating elements and/or electronic circuits residing nearby. The analysis and the design of the radiating element with the HIGP are based on a rigorous full wave Method of Moment (MoM) formulation developed in the Spectral Domain (SD), while the design of the active circuitry is developed through the commercial tool AWR Microwave Office. The final design of the component is obtained hybridizing the two methods and applying a Genetic Algorithm (GA) optimization tool in order to take advantage of the HIGP, while keeping the geometrical dimensions of the antenna suitable for mounting on a PCMCIA card, and maintaining the antenna performances acceptable. The measured results show the performances of the VCO, an antenna gain of 19.4 dBi and an increased front-to-back radiation ratio compared to the one of the same antenna mounted on a standard Perfect Electric Ground Plane (PEGP). This result, thus, demonstrates the minimization of the interferences between the designed antenna and other possible radiating and transmissive devices residing nearby.
Citation
Filiberto Bilotti, Fabio Urbani, and Lucio Vegni, "Design of an Active Integrated Antenna for a Pcmcia Card," Progress In Electromagnetics Research, Vol. 61, 253-270, 2006.
doi:10.2528/PIER06012002
References

1. Lin, J. and T. Itoh, "Active integrated antennas," IEEE Trans. Microwave Theory Tech., Vol. MTT-42, No. 12, 2186-2194, 1994.

2. Pobanz, C. W. and T. Itoh, "Active integrated antennas," IEEE Potentials, Vol. 16, No. 2, 6-10, 1997.
doi:10.1109/45.580441

3. Itoh, T., "Active integrated antennas for wireless applications," Proc. Microwave Conference APMC '97, Vol. 1, 2-5, 1997.

4. Qian, Y. and T. Itoh, "Progress in active integrated antennas and their applications," IEEE Trans. Microwave Theory Tech., Vol. MTT-46, No. 11, 1891-1900, 1998.
doi:10.1109/22.734506

5. Chang, K., R. A. York, P. S. Hall, and T. Itoh, "Active integrated antennas," IEEE Trans. Microwave Theory Tech., Vol. MTT-50, No. 3, 937-944, 2002.
doi:10.1109/22.989976

6. Leong, K. M. K. H. and T. Itoh, "Developments in active integrated antennas," Proc. 2003 IEEE Antennas Propagat. Society Int. Symp., Vol. 1, 22-27, 2003.

7. Kwon, S., B. M. Lee, Y. J. Yoon, W. Y. Song, and J. G. Yook, "A harmonic suppression antenna for an active integrated antenna," IEEE Microwave Wireless Compon. Lett., Vol. 13, No. 2, 54-56, 2003.
doi:10.1109/LMWC.2003.808716

8. Erturk, B., R. G. Ro jas, and P. Roblin, "Hybrid analysis/design method for active integrated antennas," IEE Proc. Microwaves Antennas Propagat., Vol. 146, No. 2, 131-137, 1999.
doi:10.1049/ip-map:19990208

9. Anzellotti, E., F. Bilotti, and L. Vegni, "Broad-band tuning of an AIA amplifier using 1-D PBG transmission lines," J. Electromag. Waves Applicat., Vol. 17, No. 4, 571-584, 2003.
doi:10.1163/15693930360681893

10. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopoulos, and E. Yablonovitch, "High-impedance electromagnetic surface with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., Vol. MTT-47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

11. Yang, F. R., K. P. Ma, Y. Qian, and T. Itoh, "A uniplanar compact Photonic-BandGap (UC-PBG) structure and its applications for microwave circuits," IEEE Trans. Microwave Theory Tech., Vol. MTT-47, No. 8, 1509-1514, 1999.
doi:10.1109/22.780402

12. Bilotti, F., A. Al `u, and L. Vegni, "Analysis of dipole and patch radiators in presence of artificial magnetic and impedance reflectors and ground planes: Preliminary results," Proc. PIERS'04, Vol. '' Proc. S'04, No. 3, 28-31, 2004.

13. Bilotti, F., L. Vegni, and F. Urbani, "Synthesis of patch sntennas loaded by inhomogeneous dubstrates via a combined spectral domain — Genetic Algorithm Approach," Microwave and Optical Technology Letters, Vol. 39, No. 6, 464-468, 2003.
doi:10.1002/mop.11248

14. Vegni, L., R. Cicchetti, and P. Capece, "Spectral dyadic Green's function formulation for planar integrated structures," IEEE Trans. Antennas Propagat., Vol. AP-36, No. 8, 1057-1065, 1988.
doi:10.1109/8.7217

15. Bilotti, F. and C. Vegni, "Rigorous and efficient full-wave analysis of trapezoidal patch antennas," IEEE Trans. Antennas Propagat., Vol. AP-49, No. 12, 1773-1776, 2001.
doi:10.1109/8.982459

16. Urbani, F., F. Bilotti, and L. Vegni, "Synthesis of filtering structures for microstrip active antennas using Orlov's formula," ETRI Journal, Vol. 27, No. 2, 166-171, 2005.

17. Vendelin, G. D., A. M. Pavio, and U. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques, Wiley, 1990.

18. Kurokawa, K., "Some basic characteristics of broadband negative resistance oscillator circuits," Bel l Syst. Tech. J., No. 8, 1937-1955, 1969.

19. Pozar, D. M., "Microstrip antennas," Proc. IEEE, Vol. 80, No. 1, 79-91, 1992.
doi:10.1109/5.119568

20. Vegni, L., R. Cicchetti, and P. Capece, "Spectral dyadic Green's function formulation for planar integrated structures," IEEE Trans. Antennas Propagat., Vol. 36, No. 8, 1057-1065, 1988.
doi:10.1109/8.7217

21. Waterhouse, R. B., "The use of shorting posts to improve the scanning range of probe-fed microstrip patch phased arrays," IEEE Trans. Antennas Propagat., Vol. 44, No. 3, 302-309, 1996.
doi:10.1109/8.486297

22. Park, S., C. A. Balanis, and C. R. Birtcher, "Analytical evaluation of the ssymptotic Impedance matrix of a grounded dielectric slab with roof-top functions," IEEE Trans. Antennas Propagat., Vol. AP-26, No. 2, 251-259, 1998.
doi:10.1109/8.660970

23. Bilotti, F., A. Al `u, F. Urbani, and L. Vegni, "Asymptotic evaluation of the MoM excitation vector for probe-fed microstrip antennas," J. Electromag. Waves Applicat., Vol. 19, No. 12, 1639-1654, 2005.
doi:10.1163/156939305775537410

24. Hsiao, F. R. and K. L. Wong, "A shorted patch antenna with an l-shaped ground plane for internal mobile handset antennas," Microw. Opt. Technol. Lett., Vol. 33, No. 4, 314-316, 2002.
doi:10.1002/mop.10305

25. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Trans. Antennas Propagat., Vol. AP-52, No. 9, 2403-2414, 2004.
doi:10.1109/TAP.2004.834135

26. Tretyakov, S. A. and C. R. Simovski, "Wire antennas near artificial impedance surfaces," Microw. Opt. Technol. Lett., Vol. 27, No. 1, 46-50, 2000.
doi:10.1002/1098-2760(20001005)27:1<46::AID-MOP13>3.0.CO;2-9