Vol. 59
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-01-06
Multi-Layer Crystals of Metallic Wires: Analysis of the Transmission Coefficient for Outside and Inside Exciation
By
Progress In Electromagnetics Research, Vol. 59, 299-324, 2006
Abstract
This paper proposes a new analysis of the transmission coefficient at normal incidence for 2-D periodic crystals (also called Electromagnetic Band Gap (EBG) structures), which are finite in the direction of wave-propagation and are composed of metallic wires. The crystal is considered as a set of parallel Partially Reflecting Surfaces (PRSs), whose transmission and reflection characteristics are obtained rigorously using the Finite Difference Time Domain (FDTD) method. The transmission coefficient of the EBG structure is then obtained by using a plane-wave cascading approach considering single mode interactions between PRSs. The accuracy of the results given by the hybrid method is assessed compared to those obtained directly by the Finite Difference Time Domain (FDTD) method. The minima and maxima envelops and the resonance frequencies of the transmission coefficient are studied, with analytical expressions, for both, excitation from outside and excitation from inside. A discussion is also presented concerning the strength of the coefficient greater than one obtained when the plane-wave source is inside the EBG structure. In addition, by using a transmission line model, a normalized version for this coefficient is proposed, which considers the available power by the source.
Citation
Halim Boutayeb, Kouroch Mahdjoubi, and Anne-Claude Tarot, "Multi-Layer Crystals of Metallic Wires: Analysis of the Transmission Coefficient for Outside and Inside Exciation," Progress In Electromagnetics Research, Vol. 59, 299-324, 2006.
doi:10.2528/PIER05102404
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid state physics," Physical Review Letters, Vol. 58, No. 20, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. Joannopoulos, J., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 1995.

3. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic bandgap (EBG) structures: a low mutual coupling design for array applications," IEEE Trans. on Antennas Prop., Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

4. Poilasne, G., P. Pouliguen, K. Mahdjoubi, L. Desclos, and C. Terret, "Active metallic photonic band-gap materials (MPBG): experimental results on beam shaper," IEEE Trans. on Antennas Prop., Vol. 48, No. 1, 117-119, 2000.
doi:10.1109/8.827392

5. Lourtioz, J. M., A. De Lustrac, F. Gadot, S. Rowson, A. Chel- nokov, T. Brillat, A. Ammouche, J. Danglot, O. Vanbesien, and D. Lippens, "Toward controllable photonic crystals for centimeter and millimeter wave devices," Journal of Lightwave Technology, Vol. 17, No. 11, 2025-2031, 1999.
doi:10.1109/50.802990

6. Thevenot, M., C. Cheype, A. Reineix, and B. Jecko, "Directive photonic band-gap antennas," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2115-2122, 1999.
doi:10.1109/22.798007

7. Cheype, C., C. Serier, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, "An electromagnetic bandgap resonator antenna," IEEE Trans. on Antennas Prop., Vol. 50, No. 9, 1285-1290, 2002.
doi:10.1109/TAP.2002.800699

8. Biswas, R., E. Ozbay, B. Temelkuran, M. Bayandir, M. Sigalas, and K.-M. Ho, "Exceptionally directional sources with photonic band-gap crystals," Optical Society of America, Vol. 18, No. 11, 1684-1689, 2001.

9. Akalin, A., J. Danglot, O. Vanbesien, and D. Lippens, "A highly directive dipole antenna embedded in a fabry-perot type cavity," IEEE Microwave Wireless Comp. Lett., Vol. 12, No. 2, 48-50, 2002.
doi:10.1109/7260.982873

10. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, No. 21, 213902-1, 2002.
doi:10.1103/PhysRevLett.89.213902

11. Felbacq, D., G. Tayeb, and D. Maystre, "Scattering by a random set of parallel cylinders," J. Opt. Soc. Am. A, Vol. 11, No. 9, 2526-2538, 1994.

12. Hall, R. C., R. Mittra, and K. M. Mitzner, "Analysis of multilayered periodic structures using generalized scattering matrix," IEEE Trans. on Antennas Prop., Vol. 36, No. 4, 111-117, 1988.

13. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley-Interscience Publication, 2000.

14. De Lima, A. C. and E. A. Parker, "Fabry-Perot approach to the design of double layer FSS," IEE Proc. Microwave Antennas Propagat., Vol. 143, No. 4, 157-162, 1996.
doi:10.1049/ip-map:19960236

15. Lee, S. W., G. Zarrillo, and C. L. Law, "Simple formulas for transmission through grids or plates," IEEE Trans. on Antennas Prop., Vol. 30, No. 9, 904-909, 1982.
doi:10.1109/TAP.1982.1142923

16. Ozbay, E., B. Temelkuran, and M. Bayindir, "Microwave applications of photonic crystals," Progress In Electromagnetics Research, Vol. 41, 185-209, 2003.

17. Guida, G., P. N. Stavrinou, G. Parry, and J. B. Pendry, "Time reversal symmetry, microcavities and photonic crystals," Journ. Modern. Opt., Vol. 48, 581-595, 2001.
doi:10.1080/09500340151031765

18. Hecht, E., Optics, 421-425, 421-425, 1988.

19. Pozar, D., Microwave Engineering, 2nd ed., 1998.

20. Boutayeb, H., K. Mahdjoubi, A. C. Tarot, and T. Denidni, "Directivity of an antenna embedded inside a Fabry-Perot cavity: Analysis and design," Microw. Opt. Technol. Lett., Vol. 48, No. 1, 12-17, 2006.
doi:10.1002/mop.21249

21. Balanis, C. A., Antenna Theory: Analysis and Design, second edition, 1997.