Vol. 58
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2005-11-16
Implementation of Mur's Absorbing Boundaries with Periodic Structures to Speed Up the Design Process Using Finite-Difference Time-Domain Method
By
, Vol. 58, 101-114, 2006
Abstract
The finite-difference time-domain (FDTD) method is used to obtain numerical solutions of infinite periodic structures without resorting to the complex frequency-domain analysis, which is required in traditional frequency-domain techniques. The field transformation method is successfully used to model periodic structures with oblique incident waves/scan angles. Maxwell's equations are transformed so that only a single period of the infinite periodic structure is modeled in FDTD by using periodic boundary conditions (PBCs). When modeling periodic structures with the transformed fields, the standard Mur second-order absorbing boundary condition cannot be used directly to absorb the outgoing waves. This paper presents a new implementation of Mur's second-order absorbing boundary condition (ABC) with the transformed fields in the FDTD method. For designs that require multi-parametric studies, Mur's ABCs are efficient and sufficient boundary conditions. If more accurate results are needed, the perfectly matched layer (PML) ABC can be used with the parameters obtained from the Mur solution.
Citation
Guiping Zheng, Ahmed Kishk, Allen Wilburn Glisson, and Alexander Yakovlev, "Implementation of Mur's Absorbing Boundaries with Periodic Structures to Speed Up the Design Process Using Finite-Difference Time-Domain Method," , Vol. 58, 101-114, 2006.
doi:10.2528/PIER05062103
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antenn. Propagat., Vol. AP-14, No. 3, 302-307, 1966.

2. Engquist, B. and A. Ma jda, "Absorbing boundary conditions for the numerical simulation of waves," Math. Comp., Vol. 31, No. 139, 629-651, 1977.
doi:10.2307/2005997

3. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagn. Compat., Vol. EMC-23, No. 4, 377-382, 1981.

4. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnet waves," J. Comput. Phys., Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159

5. Munk, B. A., Frequency Selective Surfaces: Theory and Design, John Wiley, 2000.

6. Yablonovitch, E., "Photonic band-gap structures," J. Opt. Soc. Amer. B., Vol. 10, No. 2, 283-294, 1993.

7. Maloney, J. G. and M. P. Kesler, "Analysis of antenna arrays using the split-field update FDTD method," Proc. IEEE AP-S Int. Symp., Vol. 4, 2036-2039, 1998.

8. Veysoglu, M. E., R. T. Shin, and J. A. Kong, "A finite-difference time-domain analysis of wave scattering from periodic surfaces: oblique incident case," J. Electromagnetic Waves and Applications, Vol. 7, No. 12, 1595-1607, 1993.

9. Kao, Y. C. A. and R. G. Atkins, "A finite difference-time domain approach for frequency selective surfaces at oblique incidence," Proc. IEEE AP-S Int. Symp., Vol. 2, 1432-1435, 1996.

10. Kao, Y. C. A., "Finite-difference time domain modeling of oblique incidence scattering from periodic surfaces," Thesis, 1997.

11. Roden, J. A., "Electromagnetic analysis of complex structures using the FDTD technique in general curvilinear coordinates," Ph.D. Thesis, 1997.

12. Roden, J. A., S. D. Gedney, M. P. Kesler, J. G. Maloney, and P. H. Harms, "Time-domain analysis of periodic structures at oblique incidence: Orthogonal and nonorthogonal FDTD implementations," IEEE trans. Microwave Theory and Techniques, Vol. 46, 420-427, 1998.
doi:10.1109/22.664143

13. Harms, P. H., J. A. Roden, J. G. Maloney, M. P. Kesler, E. J. Kuster, and S. D. Gedney, "Numerical analysis of periodic structures using the split-field algorithm," Proc. 13th Annual Review of Progress in Applied Computational Electromagnetics, 104-111, 1997.

14. Taflove, A. and S. C. Hagness, Computational Electromagnetics: the Finite-Difference Time-Domain Method, 2nd ed., 2000.