Vol. 57
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2005-09-27
Applying Divergence-Free Condition in Solving the Volume Integral Equation
By
, Vol. 57, 311-333, 2006
Abstract
Applying divergence-free condition to volume integral equation solver will be discussed. Three schemes are available: basis reduction scheme, minimal complete volume loop basis set and expanded volume loop basis set. All of them will generate smaller matrix equations than the SWG basis. The first two schemes generate poorly-conditioned matrices that are hard to solve by iterative solvers. The expanded loop basis set is easier to solve iteratively in spite of the existence of a null space in the matrix. Moreover, the construction of the expanded loop basis set is much easier than the other two schemes.
Citation
Maokun Li, and Weng Cho Chew, "Applying Divergence-Free Condition in Solving the Volume Integral Equation," , Vol. 57, 311-333, 2006.
doi:10.2528/PIER05061303
References

1. Born, M. and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 1999.

2. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.

3. Schaubert, D., D. Wilton, and A. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies," IEEE Trans. Antennas Propagat., Vol. 32, No. 1, 77-85, 1984.
doi:10.1109/TAP.1984.1143193

4. Richmond, J., "Scattering by a dielectric cylinder of arbitrary cross section shape," IEEE Trans. Antennas Propagat., Vol. 13, No. 3, 334-341, 1965.
doi:10.1109/TAP.1965.1138427

5. — "TE-wave scattering by a dielectric cylinder of arbitrary cross-section shape," IEEE Trans. Antennas Propagat., Vol. 14, No. 4, 460-464, 1966.
doi:10.1109/TAP.1966.1138730

6. Rubin, B. J., "Divergence-free basis for representing polarization current in finite-size dielectric regions," IEEE Trans. Antennas Propagat., Vol. 41, No. 3, 269-277, 1993.
doi:10.1109/8.233137

7. Wu, W. L., A. Glisson, and D. Kajfez, "A study of two numerical solution procedures for the electric field integral equation at low frequency," ACES J., Vol. 10, No. 3, 69-80, 1995.

8. Vecchi, G., "Loop-star decomposition of basis functions in the discretization of the EFIE," IEEE Trans. Antennas Propagat., Vol. 47, No. 2, 339-346, 1999.
doi:10.1109/8.761074

9. Zhao, J. S. and W. C. Chew, "Integral equation solution of Maxwell's equations from zero frequency to microwave frequencies," IEEE Trans. Antennas Propagat., Vol. 48, No. 10, 1635-1645, 2000.
doi:10.1109/8.899680

10. Lee, J. F., R. Lee, and R. J. Burkholder, "Loop star basis functions and a robust pre-conditioner for EFIE scattering problems," IEEE Trans. Antennas Propagat., Vol. 51, No. 8, 1855-1863, 2003.
doi:10.1109/TAP.2003.814736

11. Eibert, T. F., "Iterative-solver convergence for loop-star and loop-tree decompositions in method-of-moments solutions of the electric-field integral equation," IEEE Antennas Propagat. Mag., Vol. 46, No. 3, 80-85, 2004.
doi:10.1109/MAP.2004.1374101

12. Mendes, L. S. and S. A. Carvalho, "Scattering of EM waves by homogeneous dielectrics with the use of the method of moments and 3D solenoidal basis functions," Micro. Opt. Tech. Lett., Vol. 12, No. 6, 327-331, 1996.
doi:10.1002/(SICI)1098-2760(19960820)12:6<327::AID-MOP7>3.0.CO;2-H

13. Carvalho, S. A. and L. S. Mendes, "Scattering of EM waves by inhomogeneous dielectrics with the use of the method of moments and the 3D solenoidal basis functions," Micro. Opt. Tech. Lett., Vol. 23, No. 1, 42-46, 1999.
doi:10.1002/(SICI)1098-2760(19991005)23:1<42::AID-MOP12>3.0.CO;2-N

14. Kulkarni, S., R. Lemdiasov, R. Ludwig, and S. Makarov, "Comparison of two sets of low-order basis functions for tetrahedral VIE modeling," IEEE Trans. Antennas Propagat., Vol. 52, No. 10, 2789-2794, 2004.
doi:10.1109/TAP.2004.834377

15. Gan, H. and W. C. Chew, "A discrete BCG-FFT algorithm for solving 3D inhomogeneous scatterer problems," J. Electromagn. Waves Appl., Vol. 9, No. 10, 1339-1357, 1995.

16. Rao, G. R. W. S. M and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

17. Chao, H.-Y. R., "A multilevel fast multipole algorithm for analyzing radiation and scattering from wire antennas in a complex environment," Ph.D. dissertation, 2002.

18. Shaffer, C. A., A Practical Introduction to Data Structures and Algorithm Analysis, 2nd ed., 2001.

19. Chew, W. C., J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.

20. Bai, L., "An efficient algorithm for finding the minimal loop basis of a graph and its application in computational electromagnetics," M.S. thesis, 2000.

21. Keener, J. P., Principles of Applied Mathematics: Transformation and approximation, rev. ed., 2000.

22. Golub, G. H., Matrix Computations, Johns Hopkins University Press, 1996.