1. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals, University Press, 1995.
2. Reinex, A. and B. Jecko, "A new photonic band gap equivalent model using Finite Difference Time Domain method," Annales des Télécommunications, Vol. 51, 656-662, 1996.
3. Chew, W. C., L. Gürel, Y. M. Wang, G. Otto, R. L. Wagner, and Q. H. Liu, "A generalized recursive algorithm for wave-scattering solutions in two dimensions," IEEE Trans. on Microwave Theory and Techniques, Vol. 40, 716-723, 1992.
doi:10.1109/22.127521
4. Defos du Rau, M., "Diffusion electromagnétique dépendante dans les milieux hétérogènes denses. Présentation d'un modele mixte en vue de l'étude des matériaux hétérogènes," Ph.D. Thesis, 1997.
5. Elsherbeni, A. Z. and A. Kishk, "Modeling of cylindrical ob jects by circular dielectric or conducting cylinders," IEEE Trans. on Antennas and Propagation, Vol. 40, 96-99, 1992.
doi:10.1109/8.123363
6. Felbacq, D., G. Tayeb, and D. Maystre, "Scattering by a random set of parallel cylinders," J. Opt. Soc. Am. A, Vol. 11, 2526-2538, 1994.
7. Nicorovici, N. A., R. C. McPhedran, and L. C. Botten, "Photonic band gaps for arrays of perfectly conducting cylinders," Phys. Rev. E, Vol. 52, 1135-1145, 1995.
doi:10.1103/PhysRevE.52.1135
8. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwaves Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002
9. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773
10. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847
11. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699
12. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 86, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966
13. Garcia, N. and M. Nieto-Vesperinas, "Left-handed materials do not make a perfect lens," Phys. Rev. Lett., Vol. 88, 1-4, 2002.
14. Maystre, D. and S. Enoch, "Perfect lenses made with left handed materials: Alice's mirror," J. Opt. Soc. Am. A, Vol. 21, 122-131, 2004.
doi:10.1364/JOSAA.21.000122
15. Chew, W. C., J. M. Jin, E. Michielsen, and J. Song (eds.), Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.
16. Taflove, A., Computational Electrodynamics: The finite Difference Time Domain Method, Artech House, 1995.
17. Hafner, C., The Generalized Multipole Technique for Computational Electromagnetics, Artech House, 1990.
18. Silvester, P. P. and G. Pelosi, Finite Elements for Wave Electromagnetics, IEEE Press, 1994.
19. Maystre, D. and P. Vincent, "Diffraction d'une onde électromagnétique plane par un objet cylindrique non infini- ment conducteur de section arbitraire," Opt. Commun., Vol. 5, 327-330, 1972.
doi:10.1016/0030-4018(72)90025-9
20. Abramovitz, M. and I. Stegun, Handbook of Mathematical Functions, Dover Publications, 1970.
21. Courant, R. and D. Hilbert, Methods of Mathematical Physics, Vol. 2, Vol. 2, 1962.
22. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, 2000.
23. Roger, A., "Reciprocity theorem applied to the computation of functional derivatives of the scattering matrix," Electromagnetics, Vol. 2, 69-83, 1982.
24. Maystre, D. and M. Cadilhac, "Singularities of the continuation of the fields and validity of Rayleigh's hypothesis," Journal of Mathematical Physics, Vol. 26, 2201-2204, 1985.
doi:10.1063/1.526847
25. Schwartz, L., Mathematics for the Physical Sciences, Addison-Wesley, 1966.
26. Cessenat, M., "The use of the calderon pro jectors and the capacity operators in scattering," Scattering in Volumes and Surfaces, 255-268, 1990.