Vol. 53
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2005-02-05
A Novel Coupled T-Matrix and Microwave Network Approach for Multiple Scattering from Parallel Semicircular Channels with Eccentric Cylindrical Inclusions
By
, Vol. 53, 109-133, 2005
Abstract
A novel coupled T-matrix and microwave network approach is proposed for the multiple scattering from parallel semicircular channels. First, an equivalent network is set up to derive the T-matrix of a single channel, in which the S-parameters are derived for the semicircular boundary and the T-matrix of the inclusive cylinders is served as loading matrix of s-parameters. In addition, the T-matrix of the inclusive cylinders is obtained from the T-matrix of each cylinder in its local coordinates using the addition theorem of cylindrical harmonics. Thus, the T-matrix description of semicircular channels could be obtained steadily by the equivalent microwave network theory. Second, the addition theorems in half space are derived and utilized to take account of multiple scattering from several parallel channels. Comparing with previous dual-series eigenfunction solutions, the coupled method simplifies the analysis and could handle much more complex structures step by step. The method is verified by comparison with previous publications and both TM and TE wave illumination are considered.
Citation
Yao Jiang Zhang, Alexander Bauer, and Er Ping Li, "A Novel Coupled T-Matrix and Microwave Network Approach for Multiple Scattering from Parallel Semicircular Channels with Eccentric Cylindrical Inclusions," , Vol. 53, 109-133, 2005.
doi:10.2528/PIER04083102
References

1. Sachdeva, B. K. and R. K. Hurd, "Scattering by a dielectric-loaded trough in a conducting plane," J. Appl. Phys., Vol. 48, No. 4, 1473-1476, 1977.
doi:10.1063/1.323863

2. Senior, T. B. A. and J. L. Volakis, "Scattering from gaps and cracks," IEEE Trans. Antennas Propagate., Vol. 37, 744-750, 1989.
doi:10.1109/8.29361

3. Hinders, M. K. and A. D. Yaghjian, "Dual-series solution to scattering from a semicircular channel in a ground plane," IEEE Microwave and Guided Waves Lett., Vol. 1, No. 9, 1991.

4. Park, T. J., H. J. Eom, Y. Yamaguchi, W.-M.Boerner, and S. Kozaki, "TE plane wave scattering from a dielectric-loaded semi-circular trough in a conducting plane," J. Electromagn. Waves Applicat., Vol. 7, No. 2, 234-245, 1993.

5. Ragheb, H. A., "Electromagnetic scattering from a coaxial dielectric circular cylinder loading a semicircular gap in a ground plane," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 6, 1303-1309, 1995.
doi:10.1109/22.390187

6. Byun, W. J., J. W. Yu, and N. H. Myung, "TM scattering from hollow and dielectric-filled semielliptic channels with arbitrary eccentricity in a perfectly conducting plane," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 9, 1336-1339, 1998.
doi:10.1109/22.709487

7. Uslenghi, P. L. E., "Exact penetration, radiation, and scattering for a slotted semielliptical channel filled with isorefractive material," IEEE Trans. Antennas Propagat., Vol. 52, 1473-1480, 2004.
doi:10.1109/TAP.2004.829848

8. Yu, J. W., W. J. Byun, and N. H. Myung, "Multiple scattering from two dielectric-filled semi-circular channels in a conducting plane: TM case," IEEE Trans. Antennas Propagat., Vol. 50, No. 9, 1250-1253, 2002.
doi:10.1109/TAP.2002.801272

9. Stratigaki, L. G., M. P. Ioannidou, and D. P. Chrissoulidis, "Scattering from a dielectric cylinder with multiple eccentric cylindrical dielectric inclusions," IEE Proc. Microwave Antenna Propagat., Vol. 143, No. 6, 505-511, 1996.
doi:10.1049/ip-map:19960854

10. Toyama, H., K, Yasumoto, and T. Iwasaki, "Electromagnetic scattering from a dielectric cylinder with multiple eccentric cylindrical inclusions," Progress in Electromagnetics Research, Vol. 40, 113-129, 2003.

11. Peterson, B. and S. Ström, "T-matrix for electromagnetic scattering from an arbitrary number of scatterers and representation of E(3)," Phys. Rev. D8, 3661-3678, 1973.
doi:10.1103/PhysRevD.8.3661

12. Chew, W. C., Y. M. Wang, and L. Gurel, "Recursive algorithm for wave scattering solutions using windowed addition theorem," J. Electromagn. Waves Applicat., Vol. 6, No. 11, 1537-1560, 1992.

13. Chew, W. C., L. Gurel, Y. M. Wang, G. Otto, R. L. Wagner, and Q. H. Liu, "A generalized recursive algorithm for wave-scattering solutions in two dimensions," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 4, 716-722, 1992.
doi:10.1109/22.127521

14. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1990.

15. Sharkawy, M. A. and A. Z. Elsherbeni, "Electromagnetic scattering from parallel chiral cylinders of circular cross sections using an iterative procedure," Progress in Electromagnetics Research, Vol. 47, 87-110, 2004.
doi:10.2528/PIER03102101

16. Shen, T., W. Dou, and Z. Sun, "Gaussian beam scattering from a semicircular channel in a conducting plane," Progress in Electromagnetics Research, Vol. 16, 67-85, 1997.