1. Petit, R., "Diffraction d'une onde plane par un reseau metallique," Rev. Opt., Vol. 45, 353-370, 1966.
2. Vincent, P., "Differential methods," Electromagnetic Theory of Gratings, Vol. 22 of Topic in Current Physics, 101-121, 1980.
3. Peng, S. T., T. Tamir, and H. L. Bertoni, "Theory of periodic dielectric waveguides," IEEE Trans. Microwave Theory Tech., Vol. 23, No. 1123-133, 1123-133, 1975.
4. Moharam, M. G. and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am., Vol. 71, No. 7, 811-818, 1981.
5. Moharam, M. G. and T. K. Gaylord, "Rigorous coupled-wave analysis of dielectric surface-relief gratings," J. Opt. Soc. Am., Vol. 72, No. 10, 1385-1392, 1982.
6. Li, L., "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Am. A, Vol. 13, No. 5, 1024-1035, 1996.
7. Montiel, F., M. Neviere, and P. Peyrot, "Waveguide confinement of Cerenkov second-harmonic generation through a graded-index grating coupler: Electromagnetic optimization," J. Mod. Opt., Vol. 45, No. 10, 2169-2186, 1998.
doi:10.1080/095003498150646
8. Watanabe, K., "Numerical integration schemes used on the differential theory for anisotropic gratings," J. Opt. Soc. Am. A, Vol. 19, No. 11, 2245-2252, 2002.
9. Neviere, M., P. Vincent, and R. Petit, "Sur la theorie du reseau conducteur et ses applications `a l'optique," Nouv. Rev. Opt., Vol. 5, No. 2, 65-77, 1974.
doi:10.1088/0335-7368/5/2/301
10. Li, L., "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A, Vol. 13, No. 9, 1870-1876, 1996.
11. Li, L., "Reformulation of the Fourier modal method for surfacerelief grating made with anisotropic materials," J. Mod. Opt., Vol. 45, No. 71313-1334, 71313-1334, 1998.
12. Popov, E., M. Neviere, B. Gralak, and G. Tayeb, "Staircase approximation validity for arbitrary shaped gratings," J. Opt. Soc. Am. A, Vol. 19, No. 1, 33-42, 2002.
13. Popov, E. and M. Neviere, "Grating theory: New equations in Fourier space leading to fast converging results for TM polarization," J. Opt. Soc. Am. A, Vol. 17, No. 10, 1773-1784, 2000.
14. Watanabe, K., R. Petit, and M. Neviere, "Differential theory of gratings made of anisotropic materials," J. Opt. Soc. Am. A, Vol. 19, No. 2, 325-334, 2002.
15. Watanabe, K. and K. Yasumoto, "Reformulation of differential method for anisotropic gratings in conical mounting," Proc. 8th Int. Symp. Microwave and Opt. Technol., No. 6, 443-446, 2001.
16. Popov, E. and M. Neviere, "Maxwell equations in Fourier space: Fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media," J. Opt. Soc. Am. A, Vol. 18, No. 11, 2886-2894, 2001.
17. Watanabe, K., "Fast converging formulation of the differential theory for cylindrical rod gratings made of anisotropic materials," Turkish J. Telecommunications.
18. Watanabe, K., "Fast converging formulation of differential theory for non-smooth gratings made of anisotropic materials," Radio Sci., Vol. 38, No. 2, 2003.
doi:10.1029/2001RS002562
19. Li, L., "Multilayer-coated diffraction gratings: differential method of Chandezon et al. revisited," J. Opt. Soc. Am. A, Vol. 11, No. 11, 2816-2828, 1994.
20. Tayeb, G., "Contribution a l'etude de la diffraction des ondes electromagnetiques par des reseaux. Reflexions sur les methodes existantes et sur leur extension aux milieux anisotropes," Ph.D. dissertation, No. 90/Aix 3/0065, 1990.