Vol. 119
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-09-14
Investigation on Performance of Four Port MIMO Antenna Using Electromagnetic Band Gap for 5G Communication
By
Progress In Electromagnetics Research M, Vol. 119, 51-62, 2023
Abstract
In order to support 5G communication, this article suggests a small, four-port MIMO antenna with a G slot. This antenna has an electromagnetic band gap (EBG) in the shape of an S that is engraved on the substrate in the space between consecutive pairs of radiating patches. The recommended MIMO antenna is constructed from an FR4 substrate and measures 48x48x1.6 mm3. Between antenna elements 1 and 2, the integrated EBG structure of the MIMO antenna can reduce mutual coupling by 10.5 dB. The suggested four port G slot MIMO antenna with an S-shaped EBG structure displays the performance in terms of ECC less than 0.0002 and diversity gain larger than 9.99 with consistent frequency band extending from 3.3 GHz to 3.7 GHz. The proposed four port MIMO antenna is designed using HFSS software, and its simulation results are measured using anritsu combinational analyzer MS2037C vector network analyzer.
Citation
Govindarao Tamminaina, and Ramesh Manikonda, "Investigation on Performance of Four Port MIMO Antenna Using Electromagnetic Band Gap for 5G Communication," Progress In Electromagnetics Research M, Vol. 119, 51-62, 2023.
doi:10.2528/PIERM23080303
References

1. Puri, V. and H. S. Singh, "Design of an isolation improved MIMO antenna using metasurface based absorber for wireless applications," Optik, Vol. 259, 168963, 2022.
doi:10.1016/j.ijleo.2022.168963

2. Mohsenifard, F., A. Mahmoodzadeh, and Z. Adelpour, "Compact self-isolated four-element MIMO antenna for WLAN and ISM bands application," IEEE Access, Vol. 11, 9483-9492, 2023.
doi:10.1109/ACCESS.2022.3223133

3. Kumar, P., S. Pathan, O. P. Kumar, et al. "Design of a six-port compact UWB MIMO antenna with a distinctive DGS for improved isolation," IEEE Access, Vol. 10, 112964-112974, 2022.
doi:10.1109/ACCESS.2022.3216889

4. Babu, S. S. and S. R. Patre, "Meandered-line folded antenna for sub-6 GHz supported MIMO system," 2022 3rd International Conference for Emerging Technology (INCET), 1-4, Belgaum, India, 2022.

5. He, D., Y. Chen, and S. Yang, "A low-profile triple-band shared-aperture antenna array for 5G base station applications," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 4, 2732-2739, Apr. 2022.
doi:10.1109/TAP.2021.3137486

6. Yuan, X.-T., Z. Chen, T. Gu, and T. Yuan, "A wideband PIFA-pair-based MIMO antenna for 5G smartphones," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 3, 371-375, Mar. 2021.
doi:10.1109/LAWP.2021.3050337

7. Kshetrimayum, R. S., M. Mishra, S. Aissa, S. K. Koul, and M. S. Sharawi, "Diversity order and measure of MIMO antennas in single-user, multiuser, and massive MIMO wireless communications," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 1, 19-23, Jan. 2023.
doi:10.1109/LAWP.2022.3200483

8. Ye, Y., X. Zhao, and J. Wang, "Compact high-isolated MIMO antenna module with chip capacitive decoupler for 5G mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 5, 928-932, May 2022.
doi:10.1109/LAWP.2022.3152236

9. El-Din, M. S. H. S., S. I. Shams, A. M. M. A. Allam, A. Gaafar, H. M. Elhennawy, and M. Fathy Abo Sree, "SIGW based MIMO antenna for satellite down-link applications," IEEE Access, Vol. 10, 35965-35976, 2022.
doi:10.1109/ACCESS.2022.3160473

10. Cheng, B. and Z. Du, "Dual polarization MIMO antenna for 5G mobile phone applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 7, 4160-4165, Jul. 2021.
doi:10.1109/TAP.2020.3044649

11. Zhang, H. H., G. G. Yu, X. Z. Liu, et al. "Low-SAR MIMO antenna array design using characteristic modes for 5G mobile phones," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 4, 3052-3057, Apr. 2022.
doi:10.1109/TAP.2021.3121174

12. Zhang, H. H., X. Z. Liu, G. S. Cheng, Y. Liu, G. M. Shi, and K. Li, "Low-SAR four-antenna MIMO array for 5G mobile phones based on the theory of characteristic modes of composite PEC-lossy dielectric structures," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 3, 1623-1631, Mar. 2022.
doi:10.1109/TAP.2021.3133432

13. Dilli, R., "Analysis of 5G wireless systems in FR1 and FR2 frequency bands," 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), 767-772, Bangalore, India, 2020.

14. Sudhamani, et al., "A survey on 5G coverage improvement techniques: Issues and future challenges," Sensors, Vol. 2023, 1-47, 2023.

15. Sandi, E., A. Diamah, and M. A. Mawaddah, "High isolation MIMO antenna for 5G C-band application by using combination of dielectric resonator, electromagnetic bandgap, and defected ground structure," EURASIP Journal on Wireless Communications and Networking, 1-13, 2022.

16. Ayalew, L. G. and F. M. Asmare, "Design and optimization of pi-slotted dual-band rectangular microstrip patch antenna using surface response methodology for 5G applications," Heliyon, Vol. 8, No. 12, e12030, 2022.
doi:10.1016/j.heliyon.2022.e12030

17. Megahed, A. A., M. Abdelazim, E. H. Abdelhay, and H. Y. M. Soliman, "Sub-6 GHz highly isolated wideband MIMO antenna arrays," IEEE Access, Vol. 10, 19875-19889, 2022.
doi:10.1109/ACCESS.2022.3150278

18. Ye, Y., X. Zhao, and J. Wang, "Compact high-isolated MIMO antenna module with chip capacitive decoupler for 5G mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 5, 928-932, May 2022.
doi:10.1109/LAWP.2022.3152236

19. Ren, Z., A. Zhao, and S. Wu, "MIMO antenna with compact decoupled antenna pairs for 5G mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 18, 1367-1371, 2017.

20. Yuan, X.-T., Z. Chen, T. Gu, and T. Yuan, "A wideband PIFA-pair-based MIMO antenna for 5G smartphones," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 3, 371-375, Mar. 2021.
doi:10.1109/LAWP.2021.3050337

21. Salah El-Din, M. S. H., S. I. Shams, A. M. M. A. Allam, et al. "SIGW based MIMO antenna for satellite down-link applications," IEEE Access, Vol. 10, 35965-35976, Apr. 2022.
doi:10.1109/ACCESS.2022.3160473

22. Babu, S. S. and S. R. Patre, "Meandered-line folded antenna for sub-6 GHz supported MIMO system," International Conference for Emerging Technology, Belgaum, India, May 27-29, 2022.

23. Kshetrimayum, R. S., M. Mishra, S. Aissa, et al. "Diversity order and measure of MIMO antennas in single-user, multiuser, and massive MIMO wireless communications," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 1, 19-23, Jan. 2023.
doi:10.1109/LAWP.2022.3200483

24. Cheng, B. and Z. Du, "Dual polarization MIMO antenna for 5G mobile phone applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 7, 4160-4165, Jul. 2021.
doi:10.1109/TAP.2020.3044649

25. Kumar, P., S. Pathan, O. P. Kumar, et al. "Design of a six-port compact UWB MIMO antenna with a distinctive DGS for improved isolation," IEEE Access, Vol. 10, 112964-112974, Nov. 2022.

26. Suresh Babu, N., A. Q. Ansari, B. K. Kanaujia, et al. "A two-port UWB MIMO antenna with an EBG structure for WLAN/ISM applications," Materials Today: Proceedings, Vol. 74, 334-339, Nov. 2023.

27. He, D., Y. Chen, and S. Yang, "A low-profile triple-band shared-aperture antenna array for 5G base station applications," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 4, 2732-2739, Apr. 2022.
doi:10.1109/TAP.2021.3137486