Vol. 110

Latest Volume
All Volumes
All Issues
2022-05-12

A New 2×2-Element Subarray Antenna Synthesis Based on Waveguide Cavity Resonators

By Raad Salih Jarjees and Rashad Hassan Mahmud
Progress In Electromagnetics Research M, Vol. 110, 133-143, 2022
doi:10.2528/PIERM22030106

Abstract

A new design of a 2×2-element subarray antenna based on an all-cavity resonator structure is presented in this article. A novel topology which employs only two resonators to lay out the subarray is proposed, and two X-band rectangular waveguide cavity resonators are utilized for the subarray physical implementation. The first resonator is a conventional half-guided resonator operating at the TE101 mode. The second resonator, which is an oversized TE102 resonator based, is modified in order to keep the TE101 mode to propagate within the bandwidth of interest and facilitate the connection with four radiating apertures. The developed coupling matrix approach is utilized to calculate the desirable frequency response, which is a standard 2nd order Chebyshev response with introducing filtering functionality to the realised gain response of the subarray. The simulation results obtained by two simulation softwares (CST and Ansoft HFSS) validate the calculation results. An extremely wide impedance bandwidth of 23% at center frequency 10 GHz when the reflection coefficient S11 = -10 dB is obtained. A very stable realised gain with less than 0.5 dBi variations over the bandwidth of interest (8.8-11.1 GHz) is obtained with a peak gain value of 13.1 dBi at 11 GHz. The radiation patterns have very low side lobe levels, particularly in the E-plane, due to the existence of small non-radiating area and maintaining small spacing between the radiating apertures. The proposed 2×2-element subarray has the advantages of wider bandwidth and low profile compared with our and other previous 2×2-element subarrays.

Citation


Raad Salih Jarjees and Rashad Hassan Mahmud, "A New 2×2-Element Subarray Antenna Synthesis Based on Waveguide Cavity Resonators," Progress In Electromagnetics Research M, Vol. 110, 133-143, 2022.
doi:10.2528/PIERM22030106
http://jpier.org/PIERM/pier.php?paper=22030106

References