Vol. 109

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-03-29

A Simple Approach to Characterize a Buried Object Under the Ground

By Vasil Tabatadze, Kamil Karaçuha, Ömer Faruk Alperen, Sulayman Joof, and Revaz Zaridze
Progress In Electromagnetics Research M, Vol. 109, 89-100, 2022
doi:10.2528/PIERM22011205

Abstract

This study provides an alternative and straightforward approach to determining buried dielectric objects underground by employing the method of auxiliary sources. In the direct scattering problem, the Brewster angle is determined, and then the electromagnetic properties of the ground are determined. Later, the scattered field above the ground due to the buried object is evaluated. The localization of the buried object is obtained by the continuity of the field components while solving the inverse problem. The numerical experiments are done, and outcomes of the numerical experiments are compared with a commercial full-wave computational electromagnetic software. The outcomes reveal less than 1% deviation between the proposed approach and the commercial tool.

Citation


Vasil Tabatadze, Kamil Karaçuha, Ömer Faruk Alperen, Sulayman Joof, and Revaz Zaridze, "A Simple Approach to Characterize a Buried Object Under the Ground," Progress In Electromagnetics Research M, Vol. 109, 89-100, 2022.
doi:10.2528/PIERM22011205
http://jpier.org/PIERM/pier.php?paper=22011205

References


    1. Karaçuha, E., "Ters saçılma problemlerinde born yaklaşımıyla sağlanan eksik datanın Ramm fonksiyonu aracılığıyla analitik devamı,", 1990 (in Turkish).
    doi:10.1109/LGRS.2007.890550

    2. Altuncu, Y., I. Akduman, and A. Yapar, "Detecting and locating dielectric objects buried under a rough interface," IEEE Geosci. Remote Sens. Lett., Vol. 4, No. 2, 251-255, 2007.
    doi:10.1016/j.wavemoti.2012.03.004

    3. Idemen, M. and A. Alkumru, "On an inverse source problem connected with photo-acoustic and thermo-acoustic tomographies," Wave Motion, Vol. 49, No. 6, 595-604, 2012.
    doi:10.2528/PIERM19100902

    4. Tabatadze, V., K. Karacuha, E. Karaçuha, and E. Karaçuha, "Body shape and complex permittivity determination using the method of auxiliary sources," Progress In Electromagnetics Research M, Vol. 87, 115-125, 2019.
    doi:10.3997/1873-0604.2012037

    5. Millington, T. M., N. J. Cassidy, L. Crocco, and F. Soldovieri, "Tomographic GPR imaging using a linear inversion algorithm informed by FDTD modelling: A numerical case study of buried utility pipes monitoring," Near Surf. Geophys., Vol. 11, No. 2, 221-230, 2013.
    doi:10.1109/TGRS.2006.870436

    6. Altuncu, Y., A. Yapar, and I. Akduman, "On the scattering of electromagnetic waves by bodies buried in a half-space with locally rough interface," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 6, 1435-1443, 2006.

    7. Tetik, E. and I. Akduman, "3D imaging of dielectric objects buried under a rough surface by using CSI," Int. J. Antennas Propag., Vol. 2015, 2015.
    doi:10.1016/j.jappgeo.2006.06.008

    8. Shubitidze, F., et al., "Application of the normalized surface magnetic charge model to UXO discrimination in cases with overlapping signals," J. Appl. Geophys., Vol. 61, No. 3-4, 292-303, 2007.
    doi:10.1109/DIPED.2017.8100549

    9. Tabatadze, V., B. Baratashvili, I. Petoev, and R. Zaridze, "Tunnel detection and visualization using the method of auxiliary sources," 2017 XXIInd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 25-28, 2017.

    10. Guner, Ö. F., V. Tabatadze, and S. Eker, "Polyethylene pipeline detection and visualization using the method of auxiliary sources," 2020 International Applied Computational Electromagnetics Society Symposium (ACES), 1-2, 2020.
    doi:10.1109/ICMMT.2000.895762

    11. Vertiy, A. A., S. Gavrilov, and S. Aksoy, "Imaging of buried objects by microwave tomography method in conditions of low reflection on surface medium," ICMMT 2000. 2000 2nd International Conference on Microwave and Millimeter Wave Technology Proceedings (Cat. No. 00EX364), 615-618, 2000.

    12. Tabatadze, V., K. Karacuha, E. Karacuha, and R. Zaridze, "A simple approach to determine the buried object under the ground," 2021 IEEE 26th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 177-180, 2021.

    13. Bogdanov, F. G., D. D. Karkashadze, and R. S. Zaridze, "The method of auxiliary sources in electromagnetic scattering problems," Generalized Multipole Techniques for Electromagnetic and Light Scattering, 143-172, Elsevier, 1999.
    doi:10.1163/156939398X00430

    14. Zaridze, R. S., R. Jobava, G. Bit-Banik, D. Karkasbadze, D. P. Economou, and N. K. Uzunoglu, "The method of auxiliary sources and scattered field singularities (caustics)," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 11, 1491-1507, 1998.
    doi:10.1134/S1064226920050034

    15. Jeladze, V. B., T. R. Nozadze, V. A. Tabatadze, I. A. Petoev-Darsavelidze, M. M. Prishvin, and R. S. Zaridze, "Electromagnetic exposure study on a human located inside the car using the method of auxiliary sources," J. Commun. Technol. Electron., Vol. 65, 457-464, 2020.

    16. Tabatadze, V., K. Karaçuha, E. Veliyev, E. Karaçuha, and R. Zaridze, "The electric field calculation for mobile communication coverage in buildings and indoor areas by using the method of auxiliary sources," Complexity, Vol. 2020, 4563859, 2020, doi: 10.1155/2020/4563859.
    doi:10.1134/S1064226920050034

    17. Jeladze, V. B., T. R. Nozadze, V. A. Tabatadze, I. A. Petoev-Darsavelidze, M. M. Prishvin, and R. S. Zaridze, "Electromagnetic exposure study on a human located inside the car using the method of auxiliary sources," J. Commun. Technol. Electron., Vol. 65, No. 5, 457-464, 2020, doi: 10.1134/S1064226920050034.

    18. Stratton, J. A., Electromagnetic Theory, John Wiley & Sons, 2007.
    doi:10.3233/JAE-210035

    19. Akdoğan, H., V. Tabatadze, K. Karaçuha, and E. Yaldiz, "Several case studies on electric field distributions for two human bodies inside the car at 3.5 GHz-5G frequency band," Int. J. Appl. Electromagn. Mech., Vol. 67, 507-520, 2021, doi: 10.3233/JAE-210035.

    20. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, 1999.
    doi:10.1007/s11220-011-0060-7

    21. Tabatadze, V., D. Kakulia, G. Saparishvili, R. Zaridze, and N. Uzunoglou, "Development of a new efficient numerical approach for buried object recognition," Sens. Imaging, Vol. 12, No. 1-2, 35-56, 2011, doi: 10.1007/s11220-011-0060-7.

    22. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.