submit Submit login
Vol. 109
Latest Volume
All Volumes
PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-03-29
A Simple Approach to Characterize a Buried Object Under the Ground
By
Progress In Electromagnetics Research M, Vol. 109, 89-100, 2022
Abstract
This study provides an alternative and straightforward approach to determining buried dielectric objects underground by employing the method of auxiliary sources. In the direct scattering problem, the Brewster angle is determined, and then the electromagnetic properties of the ground are determined. Later, the scattered field above the ground due to the buried object is evaluated. The localization of the buried object is obtained by the continuity of the field components while solving the inverse problem. The numerical experiments are done, and outcomes of the numerical experiments are compared with a commercial full-wave computational electromagnetic software. The outcomes reveal less than 1% deviation between the proposed approach and the commercial tool.
Citation
Vasil Tabatadze, Kamil Karaçuha, Ömer Faruk Alperen, Sulayman Joof, and Revaz Zaridze, "A Simple Approach to Characterize a Buried Object Under the Ground," Progress In Electromagnetics Research M, Vol. 109, 89-100, 2022.
doi:10.2528/PIERM22011205
References

1. Karaçuha, E., "Ters saçılma problemlerinde born yaklaşımıyla sağlanan eksik datanın Ramm fonksiyonu aracılığıyla analitik devamı,", 1990 (in Turkish).
doi:10.1109/LGRS.2007.890550

2. Altuncu, Y., I. Akduman, and A. Yapar, "Detecting and locating dielectric objects buried under a rough interface," IEEE Geosci. Remote Sens. Lett., Vol. 4, No. 2, 251-255, 2007.
doi:10.1016/j.wavemoti.2012.03.004

3. Idemen, M. and A. Alkumru, "On an inverse source problem connected with photo-acoustic and thermo-acoustic tomographies," Wave Motion, Vol. 49, No. 6, 595-604, 2012.
doi:10.2528/PIERM19100902

4. Tabatadze, V., K. Karacuha, E. Karaçuha, and E. Karaçuha, "Body shape and complex permittivity determination using the method of auxiliary sources," Progress In Electromagnetics Research M, Vol. 87, 115-125, 2019.
doi:10.3997/1873-0604.2012037

5. Millington, T. M., N. J. Cassidy, L. Crocco, and F. Soldovieri, "Tomographic GPR imaging using a linear inversion algorithm informed by FDTD modelling: A numerical case study of buried utility pipes monitoring," Near Surf. Geophys., Vol. 11, No. 2, 221-230, 2013.
doi:10.1109/TGRS.2006.870436

6. Altuncu, Y., A. Yapar, and I. Akduman, "On the scattering of electromagnetic waves by bodies buried in a half-space with locally rough interface," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 6, 1435-1443, 2006.

7. Tetik, E. and I. Akduman, "3D imaging of dielectric objects buried under a rough surface by using CSI," Int. J. Antennas Propag., Vol. 2015, 2015.
doi:10.1016/j.jappgeo.2006.06.008

8. Shubitidze, F., et al. "Application of the normalized surface magnetic charge model to UXO discrimination in cases with overlapping signals," J. Appl. Geophys., Vol. 61, No. 3-4, 292-303, 2007.
doi:10.1109/DIPED.2017.8100549

9. Tabatadze, V., B. Baratashvili, I. Petoev, and R. Zaridze, "Tunnel detection and visualization using the method of auxiliary sources," 2017 XXIInd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 25-28, 2017.

10. Guner, Ö. F., V. Tabatadze, and S. Eker, "Polyethylene pipeline detection and visualization using the method of auxiliary sources," 2020 International Applied Computational Electromagnetics Society Symposium (ACES), 1-2, 2020.
doi:10.1109/ICMMT.2000.895762

11. Vertiy, A. A., S. Gavrilov, and S. Aksoy, "Imaging of buried objects by microwave tomography method in conditions of low reflection on surface medium," ICMMT 2000. 2000 2nd International Conference on Microwave and Millimeter Wave Technology Proceedings (Cat. No. 00EX364), 615-618, 2000.

12. Tabatadze, V., K. Karacuha, E. Karacuha, and R. Zaridze, "A simple approach to determine the buried object under the ground," 2021 IEEE 26th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 177-180, 2021.

13. Bogdanov, F. G., D. D. Karkashadze, and R. S. Zaridze, "The method of auxiliary sources in electromagnetic scattering problems," Generalized Multipole Techniques for Electromagnetic and Light Scattering, 143-172, Elsevier, 1999.
doi:10.1163/156939398X00430

14. Zaridze, R. S., R. Jobava, G. Bit-Banik, D. Karkasbadze, D. P. Economou, and N. K. Uzunoglu, "The method of auxiliary sources and scattered field singularities (caustics)," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 11, 1491-1507, 1998.
doi:10.1134/S1064226920050034

15. Jeladze, V. B., T. R. Nozadze, V. A. Tabatadze, I. A. Petoev-Darsavelidze, M. M. Prishvin, and R. S. Zaridze, "Electromagnetic exposure study on a human located inside the car using the method of auxiliary sources," J. Commun. Technol. Electron., Vol. 65, 457-464, 2020.

16. Tabatadze, V., K. Karaçuha, E. Veliyev, E. Karaçuha, and R. Zaridze, "The electric field calculation for mobile communication coverage in buildings and indoor areas by using the method of auxiliary sources," Complexity, Vol. 2020, 4563859, 2020, doi: 10.1155/2020/4563859.
doi:10.1134/S1064226920050034

17. Jeladze, V. B., T. R. Nozadze, V. A. Tabatadze, I. A. Petoev-Darsavelidze, M. M. Prishvin, and R. S. Zaridze, "Electromagnetic exposure study on a human located inside the car using the method of auxiliary sources," J. Commun. Technol. Electron., Vol. 65, No. 5, 457-464, 2020, doi: 10.1134/S1064226920050034.

18. Stratton, J. A., Electromagnetic Theory, John Wiley & Sons, 2007.
doi:10.3233/JAE-210035

19. Akdoğan, H., V. Tabatadze, K. Karaçuha, and E. Yaldiz, "Several case studies on electric field distributions for two human bodies inside the car at 3.5 GHz-5G frequency band," Int. J. Appl. Electromagn. Mech., Vol. 67, 507-520, 2021, doi: 10.3233/JAE-210035.

20. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, 1999.
doi:10.1007/s11220-011-0060-7

21. Tabatadze, V., D. Kakulia, G. Saparishvili, R. Zaridze, and N. Uzunoglou, "Development of a new efficient numerical approach for buried object recognition," Sens. Imaging, Vol. 12, No. 1-2, 35-56, 2011, doi: 10.1007/s11220-011-0060-7.

22. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.