Vol. 108

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-02-17

Diffraction of Plane Waves by Arbitrary-Angled Coated Wedges

By Giovanni Riccio, Gianluca Gennarelli, Flaminio Ferrara, Claudio Gennarelli, and Rocco Guerriero
Progress In Electromagnetics Research M, Vol. 108, 103-113, 2022
doi:10.2528/PIERM22010405

Abstract

This research work deals with the plane wave diffraction by a coated perfect electrically conducting wedge with arbitrary apex angle. The uniform layer covering the impenetrable wedge is made of a standard double positive material or an unfamiliar double negative metamaterial with negative permittivity and permeability at the operating frequencies. The propagation mechanism is studied when the incidence direction is perpendicular to the edge of the composite structure, and uniform asymptotic solutions are proposed to evaluate the diffraction contribution for both the polarizations. Such approximate solutions are obtained by using the Uniform Asymptotic Physical Optics approach based on electric and magnetic equivalent surface currents radiating in the neighboring free space. The related expressions are user-friendly and provide reliable field values as verified by numerical tests involving a full-wave electromagnetic solver.

Citation


Giovanni Riccio, Gianluca Gennarelli, Flaminio Ferrara, Claudio Gennarelli, and Rocco Guerriero, "Diffraction of Plane Waves by Arbitrary-Angled Coated Wedges," Progress In Electromagnetics Research M, Vol. 108, 103-113, 2022.
doi:10.2528/PIERM22010405
http://jpier.org/PIERM/pier.php?paper=22010405

References


    1. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, 1448-1461, 1974.
    doi:10.1109/PROC.1974.9651

    2. Engheta, N. and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Wiley & Sons, USA, 2006.

    3. Marquez, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, Wiley & Sons, USA, 2008.

    4. Sakoda, K., Electromagnetic Metamaterials: Modern Insights into Macroscopic Electromagnetic Fields, Springer, Singapore, 2019.
    doi:10.1007/978-981-13-8649-7

    5. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002.
    doi:10.2528/PIER01082101

    6. Chew, W. C., "Some re ections on double negative materials," Progress In Electromagnetics Research, Vol. 51, 1-26, 2005.
    doi:10.2528/PIER04032602

    7. Basdemir, H. D., "Diffraction by a right angle impedance wedge between left- and right-handed media," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 7, 869-880, 2020.
    doi:10.1080/09205071.2020.1759460

    8. Tiberio, R., G. Pelosi, and G. Manara, "A uniform GTD formulation for the diffraction by a wedge with impedance faces," IEEE Trans. Antennas Propag., Vol. 33, 867-873, 1985.
    doi:10.1109/TAP.1985.1143687

    9. Senior, T. B. A. and J. L. Volakis, "Scattering by an imperfect right-angled wedge," IEEE Trans. Antennas Propag., Vol. 34, 681-689, 1986.
    doi:10.1109/TAP.1986.1143864

    10. Rojas, R. G., "Electromagnetic diffraction of an obliquely incident plane wave field by a wedge with impedance faces," IEEE Trans. Antennas Propag., Vol. 36, 956-970, 1988.
    doi:10.1109/8.7201

    11. Syed, H. H. and J. L. Volakis, "An approximate solution for scattering by an impedance wedge at skew incidence," Radio Sci., Vol. 3, 505-524, 1995.
    doi:10.1029/94RS03015

    12. Osipov, A. V. and T. B. A. Senior, "Diffractionby aright-angled impedance wedge," Radio Sci., Vol. 43, RS4S02, 2008.

    13. Senior, T. B. A. and J. L. Volakis, "Approximate Boundary Conditions in Electromagnetics," Stevenage, IEE, 1995.

    14. Daniele, V. G. and G. Lombardi, "Wiener-Hopf solution for impenetrable wedges at skew incidence," IEEE Trans. Antennas Propag., Vol. 54, 2472-2485, 2006.
    doi:10.1109/TAP.2006.880723

    15. Lyalinov, M. A. and N. Y. Zhu, "Diffraction of a skew incident plane electromagnetic wave by an impedance wedge," Wave Motion, Vol. 44, 21-43, 2006.
    doi:10.1016/j.wavemoti.2006.06.005

    16. Holm, P. D., "A new heuristic UTD diffraction coefficient for nonperfectly conducting wedge," IEEE Trans. Antennas Propag., Vol. 48, 1211-1219, 2000.
    doi:10.1109/8.884489

    17. El-Sallabi, H. M. and P. Vainikainen, "Improvements to diffraction coefficient for non-perfectly conducting wedges," IEEE Trans. Antennas Propag., Vol. 53, 3105-3109, 2005.
    doi:10.1109/TAP.2005.854534

    18. Nechayev, Y. I. and C. C. Constantinou, "Improved heuristic diffraction coefficients for an impedance wedge at normal incidence," IEE Proc. --- Microw. Antennas Propag., Vol. 153, 125-132, 2006.
    doi:10.1049/ip-map:20045150

    19. Ferrara, F., C. Gennarelli, R. Guerriero, G. Riccio, and C. Savarese, "A UAPO diffraction contribution to take into account the edge effects in microstrip reflectarrays," Electromagn., Vol. 26, 461-471, 2006.
    doi:10.1080/02726340600837925

    20. Gennarelli, G. and G. Riccio, "Diffraction by a planar metamaterial junction with PEC backing," IEEE Trans. Antennas Propag., Vol. 58, 2903-2908, 2010.
    doi:10.1109/TAP.2010.2052581

    21. Gennarelli, G. and G. Riccio, "A uniform asymptotic solution for diffraction by a right-angled dielectric wedge," IEEE Trans. Antennas Propag., Vol. 59, 898-903, 2011.
    doi:10.1109/TAP.2010.2103031

    22. Gennarelli, G. and G. Riccio, "Plane-wave diffraction by an obtuse-angled dielectric wedge," J. Opt. Soc. Am. A, Vol. 28, 627-632, 2011.
    doi:10.1364/JOSAA.28.000627

    23. Gennarelli, G. and G. Riccio, "Useful solutions for plane wave diffraction by dielectric slabs and wedges," Int. J. Antennas Propag., 1-7, 2012.

    24. Gennarelli, G. and G. Riccio, "Diffraction by 90◦ penetrable wedges with finite conductivity," J. Opt. Soc. Am A., Vol. 31, 21-25, 2014.
    doi:10.1364/JOSAA.31.000021

    25. Gennarelli, G., M. Frongillo, and G. Riccio, "High-frequency evaluation of the field inside and outside an acute-angled dielectric wedge," IEEE Trans. Antennas Propag., Vol. 63, 374-378, 2015.
    doi:10.1109/TAP.2014.2364305

    26. Frongillo, M., G. Gennarelli, and G. Riccio, "Diffraction by a structure composed of metallic and dielectric 90◦ blocks," IEEE Antennas Wireless Propag. Lett., Vol. 17, 881-885, 2018.
    doi:10.1109/LAWP.2018.2820738

    27. Frongillo, M., G. Gennarelli, and G. Riccio, "Plane wave diffraction by arbitrary-angled lossless wedges: High-frequency and time-domain solutions," IEEE Trans. Antennas Propag., Vol. 66, 6646-6653, 2018.
    doi:10.1109/TAP.2018.2876602

    28. Frongillo, M., G. Gennarelli, and G. Riccio, "Diffraction by a dielectric wedge on a ground plane," Progress In Electromagnetics Research M, Vol. 82, 9-18, 2019.
    doi:10.2528/PIERM19030601

    29. Gennarelli, G. and G. Riccio, "On the accuracy of the UAPO solution for the diffraction by a PEC --- DNG metamaterial junction," IEEE Antennas Wireless Propag. Lett., Vol. 19, 581-585, 2020.
    doi:10.1109/LAWP.2020.2972308

    30. Gennarelli, G. and G. Riccio, "High-frequency diffraction contribution by planar metallic --- DNG metamatrial junctions," Int. J. Microw. Wireless Tech., 1-6, 2020.

    31. Frongillo, M., G. Gennarelli, and G. Riccio, "Useful solutions for the plane wave diffraction by a con guration of dielectric and metallic acute-angled wedges," Int. J. Comm. Antennas Propag., Vol. 10, 68-75, 2020.

    32. Meana, J. G., J. A. Martinez-Lorenzo, F. Las-Heras, and C. Rappaport, "Wave scattering by dielectric and lossy materials using the Modified Equivalent Current Approximation (MECA)," IEEE Trans. Antennas Propag., Vol. 58, 3757-3760, 2010.
    doi:10.1109/TAP.2010.2071363

    33. Meana, J. G., J. A. Martinez-Lorenzo, and F. Las-Heras, "High frequency techniques: The physical optics approximation and the Modified Equivalent Current Approximation (MECA)," Electromagnetic Waves Propagation in Complex Matter, A. Kishk (ed.), 207{230, Intech, Croatia, 2011.