Vol. 106
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-11-26
A Novel Circular Polarized Rectenna with Wide Ranges of Loads for Wireless Harvesting Energy
By
Progress In Electromagnetics Research M, Vol. 106, 35-46, 2021
Abstract
In this paper, a novel circularly polarized rectenna, with a harmonic suppression, capable of harvesting low-power RF energy with wide operating output loads is presented. The proposed rectenna is composed of a circularly polarized CPW-fed antenna based on a split ring resonator (SRR) and a wideband rectifying circuit. The circular polarization characteristic is achieved by breaking the symmetry of the SRR. The designed topology is fabricated and measured. Simulated and measured results show that the rectenna's efficiency is more than 45% at 2.45 GHz with an input power of -15 dBm under different polarizations. Importantly, the measured results show that the proposed configuration can maintain the same efficiency over wide ranges of loads (from 1 to 5 kΩ). The measured output dc voltage of the rectifier with a load resistance of 3-kΩ is 0.21 V and 1.22 V at -15 dBm and 0 dBm, respectively. The proposed design concept is very suitable for the 2.45 GHz ISM band (Wi-Fi, Bluetooth, RFID, etc.).
Citation
Mustapha Bajtaoui, Otman El Mrabet, Mohammed Ali Ennasar, and Mohsine Khalladi, "A Novel Circular Polarized Rectenna with Wide Ranges of Loads for Wireless Harvesting Energy," Progress In Electromagnetics Research M, Vol. 106, 35-46, 2021.
doi:10.2528/PIERM21092107
References

1. Pandey, R., A. K. Shankhwar, and A. Singh, "An improved conversion efficiency of 1.975 to 4.744 GHz rectenna for wireless sensor applications," Progress In Electromagnetics Research C, Vol. 109, 217-225, 2021.
doi:10.2528/PIERC20121102

2. Lin, W. and R. W. Ziolkowski, "Wirelessly powered internet-of-things sensors facilitated by an electrically small Egyptian axe dipole rectenna," Asia-Pacific Microwave Conference Proceedings, APMC, 891-892, Dec. 2019, doi: 10.1109/APMC46564.2019.9038497.

3. Okba, A., A. Takacs, and H. Aubert, "Compact flat dipole rectenna for IoT applications," Progress In Electromagnetics Research C, Vol. 87, 39-49, 2018.
doi:10.2528/PIERC18071604

4. Carvalho, A., N. Carvalho, P. Pinho, and R. Gonçalves, "Wireless power transmission and its applications for powering Drones," 8th Congress of the Portuguese Committee of URSI, 2014.

5. Takhedmit, H., L. Cirio, F. Costa, and O. Picon, "Transparent rectenna and rectenna array for RF energy harvesting at 2.45 GHz," 8th European Conference on Antennas and Propagation, EuCAP 2014, 2970-2972, 2014, doi: 10.1109/EuCAP.2014.6902451.
doi:10.1109/EuCAP.2014.6902451

6. Takhedmit, H., Z. Saddi, and L. Cirio, "A high-performance circularly-polarized rectenna for wireless energy harvesting at 1.85 and 2.45 GHz frequency bands," Progress In Electromagnetics Research C, Vol. 79, 89-100, 2017.
doi:10.2528/PIERC17070706

7. Lu, P., X. S. Yang, J. L. Li, and B. Z. Wang, "A compact frequency reconfigurable rectenna for 5.2- and 5.8-GHz wireless power transmission," IEEE Trans. Power Electron., Vol. 30, No. 11, 6006-6010, Nov. 2015, doi: 10.1109/TPEL.2014.2379588.
doi:10.1109/TPEL.2014.2379588

8. Li, X., L. Yang, and L. Huang, "Novel design of 2.45-GHz rectenna element and array for wireless power transmission," IEEE Access, Vol. 7, 28356-28362, 2019, doi: 10.1109/ACCESS.2019.2900329.
doi:10.1109/ACCESS.2019.2900329

9. Palazzi, V., et al. "Design of a ultra-compact low-power rectenna in paper substrate for energy harvesting in the Wi-Fi band," 2016 IEEE Wireless Power Transfer Conference (WPTC), Aveiro, Portugal, Jun. 2016, doi: 10.1109/WPT.2016.7498823.

10. Sun, H., Y. X. Guo, M. He, and Z. Zhong, "Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 929-932, 2012, doi: 10.1109/LAWP.2012.2212232.

11. Olgun, U., C. Chen, and J. L. Volakis, "Investigation of rectenna array configurations for enhanced rf power harvesting," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 262-265, 2011, doi: 10.1109/LAWP.2011.2136371.
doi:10.1109/LAWP.2011.2136371

12. Niotaki, K., S. Kim, S. Jeong, A. Collado, A. Georgiadis, and M. M. Tentzeris, "A compact dual-band rectenna using slot-loaded dual band folded dipole antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 1634-1637, 2013, doi: 10.1109/LAWP.2013.2294200.
doi:10.1109/LAWP.2013.2294200

13. Haboubi, W., H. Takhedmit, J.-D. Lan Sun Luk, S.-E. Adami, B. Allard, F. Costa, C. Vollaire, O. Picon, and L. Cirio, "An effcient dual-circularly polarized rectenna for RF energy harvesting in the 2.45 GHz ISM band," Progress In Electromagnetics Research, Vol. 148, 31-39, 2014.
doi:10.2528/PIER14031103

14. Bao, X., K. Yang, O. O'Conchubhair, and M. J. Ammann, "Differentially-fed omnidirectional circularly polarized patch antenna for RF energy harvesting," 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, May 2016, doi: 10.1109/EuCAP.2016.7481820.

15. Cao, Y., W. Hong, L. Deng, S. Li, and L. Yin, "A 2.4 GHz circular polarization rectenna with harmonic suppression for microwave power transmission," Proceedings - 2016 IEEE International Conference on Internet of Things; IEEE Green Computing and Communications; IEEE Cyber, Physical, and Social Computing; IEEE Smart Data, iThings-GreenCom-CPSCom-Smart Data 2016, 359-363, May 2017, doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.85.

16. Huang, F. J., T. C. Yo, C. M. Lee, and C. H. Luo, "Design of circular polarization antenna with harmonic suppression for rectenna application," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 592-595, 2012, doi: 10.1109/LAWP.2012.2201437.
doi:10.1109/LAWP.2012.2201437

17. "CST Studio Suite 3D EM simulation and analysis software,", https://www.3ds.com/products-services/simulia/products/cst-studio-suite/?utm_source=cst.com&utm medium=301&utm_campaign=cst (accessed May 2021).

18. Marqués, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design - Theory and experiments," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2572-2581, Oct. 2003, doi: 10.1109/TAP.2003.817562.
doi:10.1109/TAP.2003.817562

19. "145-2013 - IEEE Standard for Definitions of Terms for Antennas/IEEE Standard/IEEE Xplore,", https://ieeexplore.ieee.org/document/6758443 (accessed Mar. 31, 2021).
doi:10.1109/TAP.2003.817562

20. Mabrouki, A., M. Latrach, and V. Lorrain, "High efficiency low power rectifier design using zero bias schottky diodes," 2014 IEEE Faible Tension Faible Consommation, Monaco, Monaco, 2014, doi: 10.1109/FTFC.2014.6828604.

21. Skyworks "Surface mount mixer and detector schottky diodes data sheet, document #200041,", accessed: Mar. 31, 2021, [online], available: www.skyworksinc.com.