Vol. 103
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-07-09
The Theorem on the Magnetic Field of Rotating Charged Bodies
By
Progress In Electromagnetics Research M, Vol. 103, 115-127, 2021
Abstract
The method of retarded potentials is used to derive the Biot-Savart law, taking into account the correction that describes the chaotic motion of charged particles in rectilinear currents. Then this method is used for circular currents, and the following theorem is proved: The magnetic field on the rotation axis of an axisymmetric charged body or charge distribution has only one component directed along the rotation axis, and the magnetic field is expressed through the surface integral, which does not require integration over the azimuthal angle φ. In the general case, for arbitrary charge distribution and for any location of the rotation axis, the magnetic field is expressed through the volume integral, in which the integrand does not depend on the angle φ. The obtained simple formulas in cylindrical and spherical coordinates allow us to quickly find the external and central magnetic field of rotating bodies on the rotation axis.
Citation
Sergey G. Fedosin, "The Theorem on the Magnetic Field of Rotating Charged Bodies," Progress In Electromagnetics Research M, Vol. 103, 115-127, 2021.
doi:10.2528/PIERM21041203
References

1. Feynman, R., R. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 2, Ch. 14, Addison-Wesley, 1964.

2. Zile, D. and J. Overdui, "Derivation of the Biot-Savart Law from Coulomb’s Law and implications for gravity," APS April Meeting 2014, abstract id. D1.033, 2013, https://doi.org/10.1103/BAPS.2014.APRIL.D1.33.

3. Tong, D., Lectures on Electromagnetism, University of Cambridge, Part IB and Part II Mathematical Tripos, 2015, http://www.damtp.cam.ac.uk/user/tong/em.html.

4. Marsh, J. S., "Magnetic and electric fields of rotating charge distributions," American Journal of Physics, Vol. 50, No. 1, 51-53, 1982, https://doi.org/10.1119/1.13006.
doi:10.1119/1.13006

5. Marsh, J. S., "Magnetic and electric fields of rotating charge distributions II," American Journal of Physics, Vol. 52, No. 8, 758-759, 1984, https://doi.org/10.1119/1.13852.
doi:10.1119/1.13852

6. Lienard, A. M., L’éclairage Électrique, Vol. 16, No. 5, 53-106, 1898.

7. Wiechert, E., Archives Néerl, 2nd series, Vol. 5, 549, 1900.

8. Griffiths, D. J., Introduction to Electrodynamics, 3rd Ed., Prentice Hall, 2007.