Vol. 96

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-09-02

Dual-Band Rectenna for Wireless Information and Power Transmission of WLAN Applications

By Ju Huang, Shixing Yu, Na Kou, Zhao Ding, and Zhengping Zhang
Progress In Electromagnetics Research M, Vol. 96, 45-54, 2020
doi:10.2528/PIERM20072703

Abstract

A dual-band microstrip rectenna for wireless local area network (WLAN) applications is presented. It consists of a dual-band dual-polarized receiving antenna and a dual-band high efficiency rectifier. The receiving antenna includes a circular loop, a coplanar waveguide (CPW), and a microstrip line. To minimize mutual interference and ensure high isolation of more than 20 dB between the dual-polarized ports, a CPW is used to produce vertical polarization modes and the horizontal polarization modes is fed by a microstrip line. The horizontal excitation port is used for information receiving, while the vertical feeding port transfers enough wireless energy for rectifying. A co-simulation of HFSS and ADS is used for analysing the performance of rectenna. Measured results show that it has the -10 dB reflection coefficient bandwidths of 510 MHz (2.39-3.09 GHz) and 920 MHz (5.16-6.08 GHz) for rectifying Port 1, where the isolation between the ports is higher than 25 dB, and the cross polarization is less than -15 dB in two bands. The maximum microwave-direct current (mw-dc) conversion efficiencies of 67.7% and 57.03% at 2.45 GHz and 5.8 GHz are achieved with a 300 Ω load and 16 dBm receiving power.

Citation


Ju Huang, Shixing Yu, Na Kou, Zhao Ding, and Zhengping Zhang, "Dual-Band Rectenna for Wireless Information and Power Transmission of WLAN Applications," Progress In Electromagnetics Research M, Vol. 96, 45-54, 2020.
doi:10.2528/PIERM20072703
http://jpier.org/PIERM/pier.php?paper=20072703

References


    1. Haboubi, W., H. Takhedmit, J.-D. Lan Sun Luk, S.-E. Adami, B. Allard, F. Costa, C. Vollaire, O. Picon, and L. Cirio, "An efficient dual-circularly polarized rectenna for RF energy harvesting in the 2.45 GHz ISM band," Progress In Electromagnetics Research, Vol. 148, 31-39, 2014.
    doi:10.2528/PIER14031103

    2. Sakamoto, T., Y. Ushijima, E. Nishiyama, M. Aikawa, and I. Toyoda, "5.8-GHz series/parallel connected rectenna array using expandable differential rectenna units," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 9, 4872-4875, 2013.
    doi:10.1109/TAP.2013.2266316

    3. Huang, K. and V. K. N. Lau, "Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment," IEEE Transactions on Wireless Communications, Vol. 13, No. 2, 902-912, 2014.
    doi:10.1109/TWC.2013.122313.130727

    4. Xu, D. and Q. Li, "Joint power control and time allocation for wireless powered underlay cognitive radio networks," IEEE Transactions on Wireless Communications, Vol. 6, No. 3, 294-297, 2017.
    doi:10.1109/LWC.2017.2676102

    5. Brown, W. C., "The history of power transmission by radio waves," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 9, 1230-1242, 1984.
    doi:10.1109/TMTT.1984.1132833

    6. Liou, C., C. Kuo, and S. Mao, "Wireless-power-transfer system using near-field capacitively coupled resonators," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 63, No. 9, 898-902, 2016.
    doi:10.1109/TCSII.2016.2535042

    7. Lai, C., et al., "Highly efficient microwave power system of magnetrons utilizing frequency-searching injection-locking technique with no phase shifter," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 9, 898-902, 2020.

    8. Strassner, B. and K. Chang, "Microwave power transmission: Historical milestones and system components," Proceedings of the IEEE, Vol. 101, No. 6, 1379-1396, 2013.
    doi:10.1109/JPROC.2013.2246132

    9. Kim, Y., H. S. Bhamra, J. Joseph, and P. P. Irazoqui, "An ultra-low-power RF energy-harvesting transceiver for multiple-node sensor application," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 62, No. 11, 1028-1032, 2015.
    doi:10.1109/TCSII.2015.2456511

    10. Varshney, L. R., "Transporting information and energy simultaneously," 2008 IEEE International Symposium on Information Theory, No. 6, 1612-1616, 2008.
    doi:10.1109/ISIT.2008.4595260

    11. Huang, F., C. Lee, C. Chang, L. Chen, T. Yo, and C. Luo, "Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2646-2653, 2011.
    doi:10.1109/TAP.2011.2152317

    12. Li, W., Z. Xia, B. You, Y. Liu, and Q. H. Liu, "Dual-polarized H-shaped printed slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1484-1487, 2017.
    doi:10.1109/LAWP.2016.2646805

    13. Tan, M. and B. Wang, "A compact dual-band dual-polarized loop-slot planar antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1742-1745, 2015.
    doi:10.1109/LAWP.2015.2421731

    14. Yang, X., C. Jiang, A. Z. Elsherbeni, F. Yang, and Y. Wang, "A novel compact printed rectenna for data communication systems," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2532-2539, 2013.
    doi:10.1109/TAP.2013.2244550

    15. Riviere, J., A. Douyere, S. Oree, and J.-D. Lan Sun Luk, "An ISM band conventional CPW rectenna for low power levels," Progress In Electromagnetics Research C, Vol. 77, 101-110, 2017.
    doi:10.2528/PIERC17070401

    16. Kharrat, I., P. Xavier, T.-P. Vuong, and G. E. P. Tourtollet, "Compact rectenna design for lossy paper substrate at 2.45 GHz," Progress In Electromagnetics Research C, Vol. 62, 61-70, 2016.
    doi:10.2528/PIERC15093005

    17. Monti, G., L. Corchia, and L. Tarricone, "ISM band rectenna using a ring loaded monopole," Progress In Electromagnetics Research C, Vol. 33, 1-15, 2012.
    doi:10.2528/PIERC12082813

    18. Ur Rehman, M., W. Ahmad, and W. T. Khan, "Single- and dual-band RF rectifiers with extended input power range using automatic impedance transforming," IEEE Transactions on Microwave Theory and Techniques, Vol. 25, No. 5, 1974-1984, 2019.

    19. Liu, Z., Z. Zhong, and Y. Guo, "Enhanced dual-band ambient RF energy harvesting with ultra-wide power range," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 9, 630-632, 2015.
    doi:10.1109/LMWC.2015.2451397

    20. Takhedmit, H., Z. Saddi, and L. Cirio, "A high-performance circularly-polarized rectenna for wireless energy harvesting at 1.85 and 2.45 GHz frequency bands," Progress In Electromagnetics Research C, Vol. 79, 89-100, 2017.
    doi:10.2528/PIERC17070706

    21. Li, C., M. Yu, and H. Lin, "A compact 0.9-/2.6-GHz dual-band RF energy harvester using SiP technique," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 7, 666-668, 2017.
    doi:10.1109/LMWC.2017.2711506

    22. Niotaki, K., A. Georgiadis, A. Collado, and J. S. Vardakas, "Dual-band resistance compression networks for improved rectifier performance," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 12, 3512-3521, 2014.
    doi:10.1109/TMTT.2014.2364830

    23. Bhatt, K., S. Kumar, P. Kumar, and C. C. Tripathi, "Highly efficient 2.4 and 5.8GHz dual-band rectenna for energy harvesting applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 12, 2637-2641, 2019.
    doi:10.1109/LAWP.2019.2946911