Vol. 96
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-08-31
Design of Compact Filtenna Based on Capacitor Loaded Square Ring Resonator for Wireless Applications
By
Progress In Electromagnetics Research M, Vol. 96, 21-31, 2020
Abstract
This paper proposes and demonstrates a compact integrated filtering antenna built on a square ring resonator coupled with a capacitors loaded microstrip line filter. A microstrip filter module is connected to feeding line of the conventional patch without adding extra space. Thus, the combined configuration possesses radiating and filtering functions simultaneously. The proposed filtenna has a fractional bandwidth (FBW) of 3% at center frequency 2.4 GHz with 2.5 dB of maximum gain. The obtained result shows that the proposed design shows good stopband gain rejection, good selectivity at band edges, and smooth passband gain. Furthermore, the introduced filtenna has advantages of a small size and a simple structure, which makes it ideal for interconnection with different wearable devices operating within 2.4 GHz wireless system range.
Citation
Zayed Abdo Abdullah Nasser, Zahriladha Zakaria, Noor Azwan Shairi, Siti Normi Zabri, and Abdullah Mohammed Zobilah, "Design of Compact Filtenna Based on Capacitor Loaded Square Ring Resonator for Wireless Applications," Progress In Electromagnetics Research M, Vol. 96, 21-31, 2020.
doi:10.2528/PIERM20063008
References

1. Pan, Y. M., et al., "A low-profile high-gain and wideband filtering antenna with metasurface," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 2010-2016, 2016.
doi:10.1109/TAP.2016.2535498

2. Bakshi, G., A. Vaish, and R. S. Yaduvanshi, "Two-layer Sapphire rectangular dielectric resonator antenna for rugged communications," Progress In Electromagnetics Research Letters, Vol. 85, 73-80, 2019.
doi:10.2528/PIERL19030602

3. Lu, L., et al., "Wideband circularly polarized antenna with stair-shaped dielectric resonator and openended slot ground," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1755-1758, 2016.
doi:10.1109/LAWP.2016.2532931

4. Al-Azza, A. A., N. Malalla, F. J. Harackiewicz, and K. Han, "Stacked conical-cylindrical hybrid dielectric resonator antenna for improved ultrawide bandwidth," Progress In Electromagnetics Research Letters, Vol. 79, 79-86, 2018.
doi:10.2528/PIERL18081008

5. Wu, C.-H., et al., "Balanced-to-unbalanced bandpass filters and the antenna application," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 11, 2474-2482, 2008.
doi:10.1109/TMTT.2008.2005888

6. Zobilah, A. M. S., N. A. Shairi, and Z. Zakaria, "Fixed and selectable multiband isolation of double pole double throw switch using transmission line stub resonators for WiMAX and LTE," Progress In Electromagnetics Research B, Vol. 72, 95-110, 2017.
doi:10.2528/PIERB16100903

7. Tripathi, S., N. P. Pathak, and M. Parida, "Microwave front-end subsystems design for ITS/GPS applications," Engineering Science and Technology, an International Journal, Vol. 19, No. 4, 1815-1825, 2016.
doi:10.1016/j.jestch.2016.08.017

8. Wu, J., et al., "A printed unidirectional antenna with improved upper band-edge selectivity using a parasitic loop," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1832-1837, 2015.
doi:10.1109/TAP.2015.2392112

9. Mat, D. A. A., et al., "Integrated open loop resonator filter designed with notch patch antenna for microwave applications," TELKOMNIKA (Telecommunication, Computing, Electronics and Control), Vol. 15, 1485-1492, 2017.

10. Min, X.-L. and H. Zhang, "Compact filtering antenna based on dumbbell-shaped resonator," Progress In Electromagnetics Research Letters, Vol. 69, 51-57, 2017.
doi:10.2528/PIERL17042803

11. Hsieh, C.-Y., C.-H. Wu, and T.-G. Ma, "A compact dual-band filtering patch antenna using step impedance resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1056-1059, 2015.
doi:10.1109/LAWP.2015.2390033

12. Sun, G.-H., et al., "A compact printed filtering antenna with good suppression of upper harmonic band," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1349-1352, 2015.

13. Gao, Y., Y.-C. Jiao, Z.-B. Weng, C. Zhang, and Y.-X. Zhang, "A filtering dielectric resonator antenna with high band-edge selectivity," Progress In Electromagnetics Research M, Vol. 89, 63-71, 2020.
doi:10.2528/PIERM19112703

14. Wu, W.-J., et al., "A new compact filter-antenna for modern wireless communication systems," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1131-1134, 2011.

15. Yang, T., D. Yang, K. Sun, and J. Hu, "Compact dual-band inverted-f filtering antenna using dual-mode resonators," Progress In Electromagnetics Research M, Vol. 62, 143-151, 2017.
doi:10.2528/PIERM17092002

16. Hosain, M. M., S. Kumari, and A. K. Tiwary, "Compact filtenna for WLAN applications," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 18, No. 1, 70-79, 2019.
doi:10.1590/2179-10742019v18i11220

17. Jadhav, J. and P. Deore, "Filtering antenna with radiation and filtering functions for wireless applications," Journal of Electrical Systems and Information Technology, Vol. 4, 125-134, 2017.
doi:10.1016/j.jesit.2016.10.007

18. Wu, W.-J., Q.-F. Liu, Q. Zhang, and J.-Y. Deng, "Co-design of a compact dual-band filter-antenna for WLAN application," Progress In Electromagnetics Research Letters, Vol. 40, 129-139, 2013.
doi:10.2528/PIERL13030411

19. Cheng, W., "Compact 2.4-GHz filtering monopole antenna based on modified SRR-inspired high-frequency-selective filter," Optik, Vol. 127, No. 22, 10653-10658, 2016.
doi:10.1016/j.ijleo.2016.08.086

20. Mansour, G., M. J. Lancaster, P. S. Hall, P. Gardner, and E. Nugoolcharoenlap, "Design of filtering microstrip antenna using filter synthesis approach," Progress In Electromagnetics Research, Vol. 145, 59-67, 2014.
doi:10.2528/PIER14011405

21. Cui, J., A. Zhang, and S. Yan, "Co-design of a filtering antenna based on multilayer structure," International Journal of RF and Microwave Computer — Aided Engineering, Vol. 30, No. 2, e22096, 2020.
doi:10.1002/mmce.22096

22. Deng, J.-Y., et al., "A compact dual-band filtering antenna for wireless local area network applications," International Journal of RF and Microwave Computer — Aided Engineering, Vol. 29, No. 9, e21822, 2019.
doi:10.1002/mmce.21822

23. Mahmoud, K. R. and A. M. Montaser, "Design of compact mm-wave tunable filtenna using capacitor loaded trapezoid slots in ground plane for 5G router applications," IEEE Access, Vol. 8, 27715-27723, 2020.
doi:10.1109/ACCESS.2020.2971606