Vol. 95
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-08-15
Design and Analysis of a Stub-Less Capacitive Loaded Branch Line Coupler with Improved Bandwidth Performance
By
Progress In Electromagnetics Research M, Vol. 95, 105-114, 2020
Abstract
In this paper, a novel branch line coupler with improved bandwidth and reduced size is presented. The size reduction is achieved by means of capacitive loading. The capacitive loaded transmission line implemented in the proposed design eliminates the need of open stubs. The mechanism of size reduction and bandwidth enhancement of the coupler is discussed analytically with the help of its equivalent circuit. A prototype is fabricated and tested to validate the concept. The measured fractional bandwidth is 40%, ranging from 2.8 GHz to 4.2 GHz which is suitable for 5G systems. Moreover, the obtained phase imbalance between the output ports is less than ±5° for the entire operating range.
Citation
Muquaddar Ali, Kamalesh Kumar Sharma, and Rajendra Prasad Yadav, "Design and Analysis of a Stub-Less Capacitive Loaded Branch Line Coupler with Improved Bandwidth Performance," Progress In Electromagnetics Research M, Vol. 95, 105-114, 2020.
doi:10.2528/PIERM20062704
References

1. Pozar, D. M. P., Microwave Engineering, 3rd Ed., Wiley, 2005.

2. Kawai, T. and I. Ohta, "Planar-circuit-type 3-dB quadrature hybrids," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 12, 2462-2467, 1994.
doi:10.1109/22.339782

3. Ghali, H. and T. Moselhy, "Design of fractal rat-race coupler," IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No. 04CH37535), Vol. 1, 323-326, Fort Worth, TX, USA, 2004.

4. Wang, J., B. Z. Wang, Y. X. Guo, L. C. Ong, and S. Xiao, "A compact slow-wave microstrip branch-line coupler with high performance," IEEE Microw. Wirel. Components Lett., Vol. 17, No. 7, 501-503, 2007.
doi:10.1109/LMWC.2007.899307

5. Eccleston, K. W. and S. H. M. Ong, "Compact planar microstripline branch-line and rat-race couplers," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 10, 2119-2125, 2003.
doi:10.1109/TMTT.2003.817442

6. Chun, Y. and J. Hong, "Compact wide-band branch-line hybrids," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 2, 704-709, Feb. 2006.
doi:10.1109/TMTT.2005.862657

7. Wang, Y., M. Ke, M. J. Lancaster, and F. Huang, "Micromachined millimeter-wave rectangular-coaxial branch-line coupler with enhanced bandwidth," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 7, 1655-1660, 2009.
doi:10.1109/TMTT.2009.2021872

8. Lee, S. and Y. Lee, "Wideband branch-line couplers with single-section quarter-wave transformers for arbitrary coupling levels," IEEE Microw. Wirel. Components Lett., Vol. 22, No. 1, 19-21, 2012.
doi:10.1109/LMWC.2011.2176723

9. Wu, Y., Q. Liu, S. W. Leung, Y. Liu, and Q. Xue, "A novel planar impedance-transforming tight-coupling coupler and its applications to microstrip baluns," IEEE Trans. Components, Packag. Manuf. Technol., Vol. 4, No. 9, 1480-1488, 2014.
doi:10.1109/TCPMT.2014.2339232

10. Koziel, S. and P. Kurgan, "Design of high-performance hybrid branch-line couplers for wideband and space-limited applications," IET Microwaves, Antennas Propag., Vol. 10, No. 12, 1339-1344, 2016.
doi:10.1049/iet-map.2016.0188

11. Kumar, K. V. P. and S. S. Karthikeyan, "Miniaturized quadrature hybrid coupler using modified T-shaped transmission line for widerange harmonic suppression," IET Microwaves, Antennas Propag., Vol. 10, No. 14, 1522-1527, 2016.
doi:10.1049/iet-map.2016.0301

12. Wang, C. and W. Tang, "Compact branch-line coupler with harmonic suppression based on a planar simplified dual composite right/left-handed transmission line structure," Progress In Electromagnetics Research M, Vol. 69, 127-138, 2018.
doi:10.2528/PIERM18022706

13. Geng, L., G.-M. Wang, B.-F. Zong, M.-K. Hu, and H.-Y. Zeng, "Miniaturized branch-line coupler with wide upper stopband using right-angled triangle artificial transmission line," Progress In Electromagnetics Research Letters, Vol. 88, 137-142, 2020.
doi:10.2528/PIERL19101802

14. Chan, K. L., P. A. Alhargan, and S. R. Judah, "A quadrature-hybrid design using a four-port elliptic patch," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 2, 307-310, 1997.
doi:10.1109/22.557619

15. Zheng, S. Y., J. H. Deng, Y. M. Pan, and W. S. Chan, "Circular sector patch hybrid coupler with an arbitrary coupling coefficient and phase difference," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 5, 1781-1792, 2013.
doi:10.1109/TMTT.2013.2252184

16. Bekasiewicz, A. and S. Koziel, "Novel structure and design of enhanced-bandwidth hybrid quadrature patch coupler," Microw. Opt. Technol. Lett., Vol. 60, No. 12, 3073-3076, 2018.
doi:10.1002/mop.31426

17. Zou, X., C. M. Tong, C. Z. Li, and W. J. Pang, "Wideband hybrid ring coupler based on half-mode substrate integrated waveguide," IEEE Microw. Wirel. Components Lett., Vol. 24, No. 9, 596-598, 2014.
doi:10.1109/LMWC.2014.2328899

18. Shams, S. I. and A. A. Kishk, "Design of 3-dB hybrid coupler based on RGW technology," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 10, 3849-3855, 2017.
doi:10.1109/TMTT.2017.2690298

19. Merello, J. M., V. Nova, C. Bachiller, J. R. Sanchez, A. Belenguer, and V. E. B. Esbert, "Miniaturization of power divider and 90 hybrid directional coupler for C-band applications using empty substrate-integrated coaxial lines," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 6, 3055-3062, 2018.
doi:10.1109/TMTT.2018.2828089

20. Wang, Y., A. M. Abbosh, and B. Henin, "Broadband microwave crossover using combination of ring resonator and circular microstrip patch," IEEE Trans. Components, Packag. Manuf. Technol., Vol. 3, No. 10, 1771-1777, 2013.
doi:10.1109/TCPMT.2013.2262110

21. Liu, S. and F. Xu, "Minimized multi-layer substrate integrated waveguide 3-dB small aperture coupler," Microw. Opt. Technol. Lett., Vol. 59, 3201-3205, 2017.
doi:10.1002/mop.30892

22. Manoochehri, O., A. Darvazehban, and D. Erricolo, "UWB double-ridge waveguide coupler with low loss," Microw. Opt. Technol. Lett., Vol. 59, 1787-1791, 2017.
doi:10.1002/mop.30686