Vol. 96
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-10-11
Efficient Antenna Selection Strategy for a Massive MIMO Downlink System
By
Progress In Electromagnetics Research M, Vol. 96, 203-211, 2020
Abstract
This paper focuses on an efficient antenna selection strategy for a distributed massive MIMO system. The objective of the proposed algorithm is to attain ergodic achievable rate as much as possible with antenna selection in a constrained capacity limited system. In this proposed work, the initial selection of antenna set is based on channel amplitude and correlation which then follows an iterative approach in order to select the best subset of transmit antenna elements from the overall antenna set. The proposed scheme significantly outperforms, in terms of ergodic rate with low complexity, the prevailing transmit antenna selection methods. Simulation results show that the performance of the proposed antenna selection method is close to select all transmission with a minimum throughput loss. Thus the proposed method is best suited for a large scale distributed Massive MIMO system without degradation in system performance and is of low computational complexity.
Citation
J. Roscia Jeya Shiney, Ganesan Indumathi, and A. Allwyn Clarence Asis, "Efficient Antenna Selection Strategy for a Massive MIMO Downlink System," Progress In Electromagnetics Research M, Vol. 96, 203-211, 2020.
doi:10.2528/PIERM20062403
References

1. Attar, A., H. Li, and V. C. M. Leung, "Green last mile: How fiber-connected massively distributed antenna systems can save energy," IEEE Wireless Communications, Vol. 18, No. 5, 66-74, October 2011.
doi:10.1109/MWC.2011.6056694

2. Castaneda, E., R. Samano-Robles, and A. Gameiro, "Low complexity Scheduling Algorithm for the downlink of distributed Antenna Systems," IEEE Vehicular Technology Conference, 1-5, VTC Spring, June 2013.

3. Isabona, J. and V. M. Srivastava, "Energy-efficient communication in large scale antenna systems: Impact of variable user capacity and number of transmission antennas," Progress In Electromagnetics Research M, Vol. 58, 205-213, 2017.
doi:10.2528/PIERM17052306

4. Sun, Q., S. Jin, and J. Wang, "Downlink massive distributed antenna systems scheduling," IET Communications, Vol. 9, No. 7, 1006-1016, December 2014.
doi:10.1049/iet-com.2014.0775

5. Mohaisen, M. and K. Chang, "On transmit antenna selection for multiuser MIMO systems with dirty paper coding," Proceedings of International Symposium on Personal, Indoor and Mobile Radio Communications, 3074-3078, IEEE Press, Tokyo, September 2009.

6. Molisch, A. F. and M. Z. Win, "MIMO systems with antenna selection," IEEE Microwave Magazine, Vol. 5, No. 1, 46-56, March 2004.
doi:10.1109/MMW.2004.1284943

7. Sun, Q., S. Jin, J. Wang, Y. Zhang, X. Gao, and K. Wong, "On scheduling for massive distributed MIMO downlink," IEEE Global Communication Conference, 4151-4156, December 2013.

8. Sanayei, S. and A. Nosratinia, "Antenna selection in MIMO systems," IEEE Communication Magazine, Vol. 42, No. 10, 68-73, October 2004.
doi:10.1109/MCOM.2004.1341263

9. Wang, J., H. Zhu, and N. J. Gomes, "Distributed antenna systems for mobile communications in high speed trains," IEEE Journal on Selected Areas in Communications, Vol. 30, No. 4, 675-683, May 2012.
doi:10.1109/JSAC.2012.120502

10. Wang, D., C. Ji, S. Sun, and X. You, "Spectral efficiency of multi-cell multi-user DAS with pilot contamination," IEEE Wireless Communications and Networking Conference (WCNC'13), 3208-3212, Shanghai, China, April 2013.

11. Sadeghi, M., C. Yuen, and Y. H. Chew, "Sum rate maximization for uplink distributed massive MIMO systems with limited backhaul capacity," IEEE Globecom Workshops, 308-313, Austin, TX, December 2014.

12. Gao, Y., H. Vinck, and T. Kaiser, "Massive MIMO antenna selection: Switching architectures, capacity bounds, and optimal antenna selection algorithms," IEEE Trans. Signal Processing, Vol. 66, No. 5, 1346-1360, March 2018.
doi:10.1109/TSP.2017.2786220

13. Wu, X. H., D. Smith, and T. Yang, "MIMO antennas for a terrestrial point-to-point wireless link: From the optimum antenna spacing to a compact array," Progress In Electromagnetics Research B, Vol. 67, 59-70, 2016.
doi:10.2528/PIERB16021005

14. Siljak, H., I. Macaluso, and N. Marchetti, "Distributing complexity: A new approach to antenna selection for distributed massive MIMO," IEEE Wireless Communications Letters, Vol. 7, No. 6, 902-905, December 2018.
doi:10.1109/LWC.2018.2837133

15. Xu, H. and N. Pillay, "Low-complexity transmit antenna selection schemes for spatial modulation," IET Communications, Vol. 9, No. 2, 239-248, January 2015.
doi:10.1049/iet-com.2014.0650

16. Chen, X., D. Xu, and X. Yu, "Adaptive transmit antenna selection and power allocation scheme for turbo-blast system with imperfect channel state information," Progress In Electromagnetics Research C, Vol. 10, 215-230, 2009.
doi:10.2528/PIERC09071503

17. Li, H., L. Song, and M. Debbah, "Energy efficiency of large-scale multiple antenna systems with transmit antenna selection," IEEE Trans. Communications, Vol. 62, No. 2, 638-647, February 2014.
doi:10.1109/TCOMM.2014.011414.130498

18. Asaad, S., A. M. Rabiei, and R. R. Muller, "Massive MIMO with antenna selection: Fundamental limits and applications," IEEE Trans. Wireless Communications, Vol. 17, No. 12, 8506-8516, December 2018.
doi:10.1109/TWC.2018.2877992

19. Asaad, S., A. Bereyhi, A. M. Rabiei, R. R. Muller, and R. F. Schaefer, "Optimal transmit antenna selection for massive MIMO wiretap channels," IEEE Journal on Selected Areas in Communications, Vol. 36, No. 4, 817-828, April 2018.
doi:10.1109/JSAC.2018.2825159

20. Feng, J. and J. Wang, "A low complexity antenna selection algorithm for multiuser MIMO systems," International Conference on CEC-Net, 4630-4633, April 2011.

21. Gharavi-Alkhansari, M. and A. B. Gershman, "Fast antenna subset selection in MIMO systems," IEEE Transactions on Signal Processing, Vol. 52, No. 2, 339-347, February 2004.
doi:10.1109/TSP.2003.821099

22. Li, J., D. Wang, P. Zhu, and X. You, "Downlink spectral efficiency of multi-cell multi-user large-scale DAS with pilot contamination," IEEE International Conference on Communication, Wireless Communications Symposium, 2011-2016, June 2015.

23. Molisch, A. F., M. Z. Win, Y. S. Choi, and J. H. Winters, "Capacity of MIMO systems with antenna selection," IEEE Trans. Wireless Communications, Vol. 4, No. 4, 1759-1772, July 2005.
doi:10.1109/TWC.2005.850307

24. Chia, S., M. Gasparroni, and P. Brick, "The next challenge for cellular networks: Backhaul," IEEE Microwave Magazine, Vol. 10, No. 5, 54-66, August 2009.
doi:10.1109/MMM.2009.932832

25. Park, S., C. Chae, and S. Bahk, "Large-scale antenna operation in heterogeneous cloud radio access networks: A partial centralization approach," IEEE Wireless Communications, Vol. 22, No. 3, 32-40, June 2015.
doi:10.1109/MWC.2015.7143324

26. Xu, G., A. Liu, W. Jiang, H. Xiang, and W. Luo, "Joint user scheduling and antenna selection in distributed massive MIMO systems with limited backhaul capacity," China Communications, Vol. 11, No. 5, 17-30, May 2014.
doi:10.1109/CC.2014.6880457