Vol. 90

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-03-11

Optimization of Gimbal Parameters to Improve the Boresight Error Performance of Airborne Radomes

By Yash Sanjay Zanwar, Aparna Parameswaran, and Hrishikesh Sonalikar
Progress In Electromagnetics Research M, Vol. 90, 127-135, 2020
doi:10.2528/PIERM20012104

Abstract

This paper presents the effect of gimbal geometry parameters on the electromagnetic performance of streamlined radome for airborne applications. The work demonstrates that the gimbal position significantly affects the boresight error performance. The optimization of gimbal position is performed, and the resultant boresight error is limited to 1.5 mrad while keeping the insertion loss below 0.25 dB over the entire antenna scan angle range. The analysis of the antenna-radome system is carried out using the 3D ray tracing method. This work shows that the gimbal geometry parameters provide additional degree of freedom for improving radome performance parameters and can be applied to both the gimbal mounted and electronically scanning antennas enclosed by streamlined radomes.

Citation


Yash Sanjay Zanwar, Aparna Parameswaran, and Hrishikesh Sonalikar, "Optimization of Gimbal Parameters to Improve the Boresight Error Performance of Airborne Radomes," Progress In Electromagnetics Research M, Vol. 90, 127-135, 2020.
doi:10.2528/PIERM20012104
http://jpier.org/PIERM/pier.php?paper=20012104

References


    1. Kozakoff, D. J., Analysis of Radome-Enclosed Antennas, 2nd Ed., Artech House, 2010.

    2. Shavit, R., Radome Electromagnetic Theory and Design, Wiley Online Library, 2018.
    doi:10.1002/9781119410850

    3. Cady, W. M., M. B. Karelitz, and L. A. Turner, Radar Scanners and Radomes, Vol. 26, McGraw-Hill Book Company, 1948.

    4. Crone, G. A. E., A. W. Rudge, and G. N. Taylor, "Design and performance of airborne radomes: A review," IEE Proc., Vol. 128, 451-464, 1981.

    5. Nair, R. U. and R. M. Jha, "Electromagnetic performance analysis of a novel monolithic radome for airborne applications," IEEE Transactions on Antennas and Propagation, Vol. 57, 3664-3668, 2009.
    doi:10.1109/TAP.2009.2026595

    6. Nair, R. U., S. Shashidhara, and R. Jha, "Novel inhomogeneous planar layer radome design for airborne applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 854-856, 2012.
    doi:10.1109/LAWP.2012.2210531

    7. Chen, F., Q. Shen, and L. Zhang, "Electromagnetic optimal design and preparation of broadband ceramic radome material with graded porous structure," Progress In Electromagnetics Research, Vol. 105, 445-461, 2010.
    doi:10.2528/PIER10012005

    8. Nair, R., M. Suprava, and R. Jha, "Graded dielectric inhomogeneous streamlined radome for airborne applications," Electronics Letters, Vol. 51, No. 11, 862-863, 2015.
    doi:10.1049/el.2015.0462

    9. Nair, R. U., S. Vandhana, and R. M. Jha, "Temperature-dependant electromagnetic performance predictions of a hypersonic streamlined radome," Progress In Electromagnetics Research, Vol. 154, 65-78, 2015.
    doi:10.2528/PIER15052602

    10. Zhou, L., Y. Pei, and D. Fang, "Dual-band A-sandwich radome design for airborne applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 218-221, 2015.

    11. Xu, W., "Multiobjective particle swarm optimization of boresight error and transmission loss for airborne radomes," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 11, 5880-5885, 2014.
    doi:10.1109/TAP.2014.2352361

    12. Xu, W., B. Duan, P. Li, and Y. Qiu, "A new efficient thickness profile design method for streamlined airborne radomes," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 6190-6195, 2017.
    doi:10.1109/TAP.2017.2754460

    13. Xu, W., B. Duan, P. Li, Y. Zong, and Y. Qiu, "Novel compensation method for electromagnetic performance of dielectric radome based on reflector shaping," IET Microwaves, Antennas & Propagation, Vol. 9, No. 2, 125-132, 2014.
    doi:10.1049/iet-map.2013.0712

    14. Xu, W., B. Duan, P. Li, and Y. Qiu, "Study on the electromagnetic performance of inhomogeneous radomes for airborne applications. Part I: Characteristics of phase distortion and boresight error," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 3162-3174, 2017.
    doi:10.1109/TAP.2017.2694489

    15. Xu, W., B. Duan, P. Li, and Y. Qiu, "Study on the electromagnetic performance of inhomogeneous radomes for airborne applications. Part II: The overall comparison with variable thickness radomes," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 3175-3183, 2017.
    doi:10.1109/TAP.2017.2694463

    16. Xu, W., P. Li, and Y. Qiu, "Electromagnetic performance analysis of inhomogeneous airborne radomes for circular polarization applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 1, 74-78, 2018.
    doi:10.1109/LAWP.2018.2880946

    17. Xu, W., P. Li, and Y. Qiu, "Efficient variable thickness radome design with insertion phase delay correction," International Journal of Antennas and Propagation, No. 9150361, 1-12, 2019.

    18. Yazeen, P. M., C. Vinisha, S. Vandana, M. Suprava, and R. U. Nair, "Electromagnetic performance analysis of graded dielectric inhomogeneous streamlined airborne radome," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 5, 2718-2723, 2017.
    doi:10.1109/TAP.2017.2669718