login
Vol. 90
Latest Volume
All Volumes
PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-03-04
Optimization of Wide-Band and Wide Angle Cavity-Backed Microstrip Patch Array Using Genetic Algorithm
By
Progress In Electromagnetics Research M, Vol. 90, 59-67, 2020
Abstract
This paper specifies optimization of a low active reflection coefficient (ARC) array element with a cavity-backed microstrip patch (CBMP) using a genetic algorithm (GA) at wide-band and 2-dimensional (2D) wide angle. Both the GA implemented with a user-defined MATLAB code and a 3-dimensional (3D) full-wave electromagnetic simulator CST MWS are simulated with a real-time direct link. An optimization method using not a traditional unit cell ora small array but a 15 × 15 finite array structure is proposed to apply to a large-scale array antenna. The CBMP array antenna to meet a design goal of a max ARC is optimally designed at equally divided 9 frequencies and 11374 beam angles for S-band 400 MHz operating frequency bandwidth and beam scan coverage (Az = -60° ~ +60°, El = -3° ~ +90°). Measurement results show that a prototype and a full-scale array antenna have low ARC below -8.1 dB and -6.9 dB respectively for required wide frequency bandwidth and beam scan coverage. It is confirmed that the proposed method is a good solution for optimizing a large-scale array antenna.
Citation
Doo-Soo Kim, Il-Tak Han, Woo-Sung Kim, Jin-Mo Yang, Yong-Hee Han, and Kyung-Tae Kim, "Optimization of Wide-Band and Wide Angle Cavity-Backed Microstrip Patch Array Using Genetic Algorithm," Progress In Electromagnetics Research M, Vol. 90, 59-67, 2020.
doi:10.2528/PIERM19122804
References

1. Waterhouse, R. B., "Design and scan performance of large, probe-fed stacked microstrip patch arrays," IEEE Transactions on Antennas and Propagation, Vol. 50, 893-895, 2002.
doi:10.1109/TAP.2002.1017675

2. Aza, G. and M. A. Zapata, "Broad-band cavity-backed and capacitively probe-fed microstrip patch arrays," IEEE Transactions on Antennas and Propagation, Vol. 48, 784-789, 2000.
doi:10.1109/8.855498

3. Biswal, S. P. and S. Das, "Mutual coupling reduction of a printed dual element antenna system using a parasitic scatter," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1375-1376, 2018.
doi:10.1109/APUSNCURSINRSM.2018.8608882

4. Dominguez, G. E., J. F. Gonzalez, P. Padilla, and M. S. Castaner, "Mutual coupling reduction using EBG in steering antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1265-1268, 2012.
doi:10.1109/LAWP.2012.2226013

5. Lee, J. Y., S. H. Kim, and J. H. Jang, "Reduction of mutual coupling in planar multiple antenna by using 1-D EBG and SRR structures," IEEE Transactions on Antennas and Propagation, Vol. 63, 4194-4198, 2015.
doi:10.1109/TAP.2015.2447052

6. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2004.
doi:10.1163/156939304774113089

7. Donelli, M., "Design of broadband metal nanosphere antenna arrays with a hybrid evolutionary algorithm," Optics Letters, Vol. 38, No. 4, 401-403, 2013.
doi:10.1364/OL.38.000401

8. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.
doi:10.2528/PIERC12012304

9. Moriyama, T., M. Manekiya, and M. Donelli, "A compact switched-beam planar antenna array for wireless sensors operating at Wi-Fi band," Progress In Electromagnetics Research C, Vol. 83, 137-145, 2018.

10. Lalbakhsh, A., M. U. Afzal, K. Esselle, and S. L. Smith, "Wideband near-field correction of a Fabry-Perot resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1975-1980, 2019.
doi:10.1109/TAP.2019.2891230

11. Lalbakhsh, A., M. U. Afzal, and K. Esselle, "Simulation-driven particle swarm optimization of spatial phase shifters," 2016 International Conference on Electromagnetics in Advanced Applications, 428-430, 2016.

12. Jamshidi, M., A. Lalbakhsh, S. Lotfi, H. Siahkamari, B. Mohamadzade, and J. Jalilian, "A neuro-based approach to designing a Wilkinson power divider," International Journal of RF and Microwave Computer-Aided Engineering, e22091, 2019.

13. Lalbakhsh, A., M. U. Afzal, K. Esselle, and B. Zeb, "Multi-objective particle swarm optimization for the realization of a low profile bandpass frequency selective surface," ISAP, 1-4, 2015.

14. Li, L., J. Wang, H. Ma, M. Feng, M. Yan, J. Zhang, and S. Qu, "All-dielectric metamaterial band stop frequency selective surface via high-permittivity ceramics," 2016 Progress In Electromagnetic Research Symposium (PIERS), 3324-3326, Shanghai, China, Aug. 8-11, 2016.

15. Lalbakhsh, A., M. U. Afzal, K. Esselle, and S. Smith, "Design of an artificial magnetic conductor surface using an evolutionary algorithm," ICEAA, 885-887, 2017.

16. Densmore, A. and Y. Rahmat-Samii, "Three-parameter elliptical aperture distributions for sum and difference antenna patterns using particle swarm optimization," Progress In Electromagnetics Research, Vol. 143, 709-743, 2013.
doi:10.2528/PIER13103105

17. Jamshidi, M., A. Lalbakhsh, B. Mohamadzade, H. Siahkamari, and S. M. Mousavi, "A novel neural-based approach for design of microstrip filters," AEU - International Journal of Electronics and Communications, Vol. 110, 152847, 2019.
doi:10.1016/j.aeue.2019.152847

18. Haupt, R. L. and D. H. Werner, Genetic Algorithms in Electromagnetics, Wiley Inter-Science, 2007.
doi:10.1002/047010628X

19. Khalid, A., S. A. Sheikh, I. H. Shah, and Q. U. Khan, "Synthesis of linear antenna array using genetic algorithm to reduce peak sidelobe level," 2015 9th International Conference on Electrical and Electronics Engineering (ELECO), 346-350, 2015.
doi:10.1109/ELECO.2015.7394496

20. Song, J., H. Zheng, and L. Zhang, "Application of particle swarm optimization algorithm and genetic algorithms in beam broadening of phased array antenna," 2010 International Symposium on Signals, Systems and Electronics, Vol. 1, 1-4, 2010.

21. Le, Q. T., N. D. Nguyen, and T. T. Dam, "Amplitude and phase adaptive nulling with a genetic algorithm for array antennas," 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce, 1887-1890, 2011.

22. Zhu, X., Q. Yang, M. Li, B. Liu, X. Yang, P. Chen, and B. Yang, "A circularly polarized waveguide slot array antenna based on genetic algorithm," Proceedings of 2012 5th Global Symposium on Millimeter-Waves, 155-158, 2012.
doi:10.1109/GSMM.2012.6314024

23. Yang, J. and P. S. Kildal, "Optimization of large log-periodic dual-dipole antenna by using Genetic Algorithm on embedded element in small log-periodic array," 2009 3rd European Conference on Antennas and Propagation, 1308-1311, 2009.

24. Zeghdoud, A., M. C. Derbal, and M. Nedil, "Optimization of a dual-band microstrip antenna array using genetic algorithms," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1005-1006, 2018.
doi:10.1109/APUSNCURSINRSM.2018.8609058