Vol. 90

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-03-10

Design and Analysis of a Compact and Excellent Out of Band Rejection E-CRLH Inspired Bandpass Filter

By Mahmoud Abdelrahman Abdalla, Dilip Kumar Choudhary, and Raghvendra Kumar Chaudhary
Progress In Electromagnetics Research M, Vol. 90, 117-125, 2020
doi:10.2528/PIERM19122501

Abstract

This paper introduces the design and analysis of a compact bandpass with sharp attenuation. The filter topology employs three different cells of a bisected-Π/Π configuration of a negative refractive index metamaterial transmission line. The filter centre frequency is 3.65 GHz, and its 3 dB cutoff frequencies are 2.55 GHz and 4.6 GHz (57% fractional bandwidth). The filter attenuation increases to 20 dB in only 100 MHz (at 4.7 GHz). Moreover, the filter has only 0.2 dB insertion loss within the passband. The filter stopband is characterized with typical flat with 0.2 dB return loss within the stopband (4.7 GHz-5.75 GHz) and very close to 20 dB insertion loss. Moreover, the filter has two frequency independent designed transmission zeros within this stopband. Along with previous specifications, the filter size is only 0.22λg × 0.20λg (12 × 11 mm2) at centre frequency. The filter performance has been validated through circuit model, electromagnetic simulation, and experimental measurements.

Citation


Mahmoud Abdelrahman Abdalla, Dilip Kumar Choudhary, and Raghvendra Kumar Chaudhary, "Design and Analysis of a Compact and Excellent Out of Band Rejection E-CRLH Inspired Bandpass Filter," Progress In Electromagnetics Research M, Vol. 90, 117-125, 2020.
doi:10.2528/PIERM19122501
http://jpier.org/PIERM/pier.php?paper=19122501

References


    1. Hong, J. S., Microstrip Filters for RF/Microwave Applications, Wiley, New York, NY, USA, 2011.
    doi:10.1002/9780470937297

    2. Feng, W., W. Che, and Q. Xue, "Transversal signal interaction: Overview of high-performance wideband bandpass filters," IEEE Microwave Magazine, Vol. 15, No. 2, 84-96, 2014.
    doi:10.1109/MMM.2013.2296216

    3. Zhang, Z.-C., S.-W. Wong, J.-Y. Lin, H. W. Liu, L. Zhu, and Y. J. He, "Design of multistate diplexers on uniform-and stepped-impedance stub-loaded resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 4, 1452-1460, 2019.
    doi:10.1109/TMTT.2019.2893656

    4. Orellana, M., J. Selga, P. Vélez, M. Sans, A. Rodríguez, J. Bonache, V. E. Boria, and F. Martín, "Design of capacitively loaded coupled-line bandpass filters with compact size and spurious suppression," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 4, 1235-1248, 2017.
    doi:10.1109/TMTT.2016.2638843

    5. Lim, T., B.-W. Min, and Y. Lee, "Miniaturisation method for coupled-line bandpass filters with identical and minimal number of reactive elements," IET Microwaves, Antennas & Propagation, Vol. 8, No. 14, 1192-1197, 2014.
    doi:10.1049/iet-map.2014.0085

    6. Lin, T.-W., J.-T. Kuo, and S.-J. Chung, "Dual-mode ring resonator bandpass filter with asymmetric inductive coupling and its miniaturization," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 9, 2808-2814, 2012.
    doi:10.1109/TMTT.2012.2205936

    7. Mo, Y. X., K. J. Song, and Y. Fan, "Miniaturized triple-band bandpass filter using coupled lines and grounded stepped impedance resonators," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 5, 333-335, 2014.
    doi:10.1109/LMWC.2014.2310458

    8. Park, J.-H., S. Lee, and Y. Lee, "Extremely miniaturized bandpass filters based on asymmetric coupled lines with equal reactance," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 2, 261-269, 2011.
    doi:10.1109/TMTT.2011.2175744

    9. Huang, C.-C., W.-T. Fang, and Y.-S. Lin, "Miniaturization of broadband stub bandpass filters using bridged-T coils," IEEE Access, Vol. 6, 20164-20173, 2018.
    doi:10.1109/ACCESS.2018.2818938

    10. Li, Y., C. Wang, and N.-Y. Kim, "Design of very compact bandpass filters based on differential transformers," IEEE Microwave and Wireless Components Letters, Vol. 25, 439-441, 2015.
    doi:10.1109/LMWC.2015.2427660

    11. Tang, M., T. Shi, and X. Tan, "A novel triple-mode hexagon bandpass filter with meander line and central-loaded stub," Microwave and Optical Technology Letters, Vol. 58, 9-12, 2015.

    12. Tanni, K. and K. Wada, "Wideband bandpass filter composed of dual-path resonators using coupled-line and transmission line with inductive elements," IEEE Microw. Wireless Compon. Lett., Vol. 24, 14-16, 2014.
    doi:10.1109/LMWC.2013.2286612

    13. Xiao, J. K., M. Zhu, Y. Li, and J. G. Ma, "Coplanar waveguide bandpass filters with separate electric and magnetic couplings," Electronics Letter, Vol. 52, 122-124, 2016.
    doi:10.1049/el.2015.3112

    14. Yechou, L., A. Tribak, M. Kacim, J. Zbitou, and A. M. Sanchez, "A novel wideband bandpass filter using coupled lines and T-shaped transmission lines with wide stopband on low-cost substrate," Progress In Electromagnetics Research C, Vol. 67, 143-152, 2016.
    doi:10.2528/PIERC16062204

    15. Wu, Y. D., G. H. Li, W. Yang, and X. Yang, "Design of compact wideband QMSIW band-pass filter with improved stopband," Progress In Electromagnetics Research Letters, Vol. 65, 7-79, 2017.

    16. Lan, S.-W., M.-H. Weng, C.-Y. Hung, and S.-J. Chang, "Design of a compact ultra-wideband bandpass filter with an extremely broad stopband region," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 6, 392-394, 2016.
    doi:10.1109/LMWC.2016.2558039

    17. Lan, S. W., M. H. Weng, C. Y. Hung, and S. J. Chang, "Design of a compact ultra-wideband bandpass filter with an extremely broad stopband region," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 6, 392-394, 2016.
    doi:10.1109/LMWC.2016.2558039

    18. Zhang, R. and D. Peroulis, "Mixed lumped and distributed circuits in wideband bandpass filter application for spurious-response suppression," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 11, 978-980, 2018.
    doi:10.1109/LMWC.2018.2867096

    19. Shi, S. Y., W. J. Feng, W. Q. Che, and Q. Xue, "Novel miniaturization method for wideband filter design with enhanced upper stopband," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 2, 817-826, 2013.
    doi:10.1109/TMTT.2012.2229291

    20. Shen, G. X., W. Q. Che, W. J. Feng, and Q. Xue, "Analytical design of compact dual-band filters using dual composite right-/left-handed resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 3, 804-814, 2016.
    doi:10.1109/TMTT.2016.2631168

    21. Bo, Y., Z. Y. Lin, X. Cai, H. G. Hao, W. Luo, and W. Huang, "A novel compact crlh bandpass filter on CSRR-loaded substrate integrated waveguide cavity," Progress In Electromagnetics Research M, Vol. 75, 121-129, 2018.

    22. Abdalla, M. A. and Z. Hu, "Composite right/left-handed coplanar waveguide ferrite forward coupled-line coupler," IET Microwaves, Antennas & Propagation, Vol. 9, No. 10, 1104-1111, 2015.
    doi:10.1049/iet-map.2014.0539

    23. Abdalla, M. A. and Z. Hu, "Compact metamaterial coplanar waveguide ferrite tunable resonator," IET Microwaves, Antennas and Propagation, Vol. 10, No. 4, 406-412, 2016.
    doi:10.1049/iet-map.2015.0515

    24. Wei, Z. H., J. Huang, Y. H. Geng, J. Li, and G. Q. Xu, "Compact broadband bandpass filter on quarter-mode substrate integrated waveguide loaded with CRLH interdigital slots," Progress In Electromagnetics Research Letters, Vol. 59, 85-91, 2016.
    doi:10.2528/PIERL16030407

    25. Ibrhim, A. A., M. A. Abdalla, and D. Budimir, "Coupled CRLH transmission lines for compact and high selective bandpass filters," Microwave and Optical Technology Letters, Vol. 59, No. 6, 1248-1251, 2017.
    doi:10.1002/mop.30518

    26. Mohan, M. P., A. Alphones, and M. F. Karim, "Triple band filter based on double periodic CRLH resonator," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 3, 212-214, 2018.
    doi:10.1109/LMWC.2018.2804171

    27. Ibrahim, A. A., M. A. Abdalla, and W. A. E. Ali, "Small size and wide-band band pass filter with DGS/CRLH structures," Applied Computational Electromagnetics Society Journal, Vol. 34, No. 5, 777-783, 2019.

    28. Choudhary, D. K., M. A. Abdalla, and R. K. Chaudhary, "Compact D-CRLH resonator for low pass filter with wide rejection band, high roll-off and transmission zeros," Int. Journal of Microwave and Wireless Technologies, Vol. 11, No. 5-6, 509-516, 2019.
    doi:10.1017/S175907871800140X

    29. Hassan, A. Y. and M. A. Abdalla, "A double optimized transmission zeros based on π-CRLH dual-band bandpass filter," Progress In Electromagnetics Research Letters, Vol. 84, 131-137, 2019.
    doi:10.2528/PIERL19042004

    30. Eleftheriades, G. V., "A generalized negative-refractive-index transmission-line (NRI-TL) metamaterial for dual-band and quad-band applications," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 6, 415-417, 2007.
    doi:10.1109/LMWC.2007.897786

    31. Rennings, A., S. Otto, J. Mosig, C. Caloz, and I. Wolff, "Extended composite right/left-handed (E-CRLH) metamaterial and its application as quadband quarter-wavelength transmission line," Asia-Pacific Microwave Conference (APMC), 1405-1408, Japan, 2006.

    32. Ahmed, K. U. and B. S. Vidree, "Fine control of filter performance based on composite right/left-handed metamaterial technology," Int. J. of RF and Microwave Computer-Aided Engineering, Vol. 24, 39-45, 2014.
    doi:10.1002/mmce.20710

    33. Studniberg, M. and G. V. Eleftheriades, "A dual-band bandpass filter based on generalized negative-refractive-index transmission-lines," IEEE Microw. & Wireless Comp. Lett., Vol. 19, 18-20, 2009.
    doi:10.1109/LMWC.2008.2008538

    34. Hagag, M. F. and M. A. Abdalla, "Ultra compact CPW dual band filter based on π-generalized metamaterial NRI transmission line," Journal of Electromagnetic Waves and Applications, Vol. 29, 1093-1103, 2015.
    doi:10.1080/09205071.2015.1044123

    35. Fouad, M. A. and M. A. Abdalla, "A new π-T generalized metamaterial NRI transmission line for a compact CPW triple BPF applications," IET Microw. Ant. & Propag., Vol. 2014, No. 8, 1097-1104, 2014.
    doi:10.1049/iet-map.2013.0698