Vol. 79
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-03-06
Numerical Analysis of Electromagnetic Coupling Effects in Measurements of Frequency Dependent Soil Electrical Properties
By
Progress In Electromagnetics Research M, Vol. 79, 101-111, 2019
Abstract
Recent studies show that the frequency dependent soil properties can significantly influence transient grounding resistance and, subsequently, lightning protection and reliability of the electrical grid. However, these properties require further research: for example, it is not clear what factors (apart from the low-frequency resistivity) should be taken into consideration to determine accurately the properties for a particular soil (without conducting laborious measurements). Additional experimental data are needed. When measurements are conducted, the electromagnetic coupling between circuits can cause significant measurement error at frequencies about several MHz. In order to estimate this error, it is convenient to use a calculation method, as in this case, it is possible to set particular frequency dependent properties for the ground and compare those with the calculated ones (using an electrode array). In the article, the electromagnetic coupling error is examined for several commonly used electrode arrays using the finite difference time domain method. This method allows simulating wires with in nite length, which is important for modeling pole-dipole and pole-pole arrays. Its drawback for this type of calculations, however, that it is relatively time-consuming. It was found that among the considered array configurations the error is smallest for the dipole-dipole arrays with the perpendicular allocation of the measurement wires and the pole-dipole array. By increasing the distance between particular parts of measurement wires, one can significantly reduce the error for some other arrays.
Citation
Dmitry Kuklin, "Numerical Analysis of Electromagnetic Coupling Effects in Measurements of Frequency Dependent Soil Electrical Properties," Progress In Electromagnetics Research M, Vol. 79, 101-111, 2019.
doi:10.2528/PIERM18112102
References

1. Kuklin, D., "Choosing configurations of transmission line tower grounding by back flashover probability value," Front. Energy, Vol. 10, No. 2, 213-226, 2016.
doi:10.1007/s11708-016-0398-6

2. Visacro, S. and R. Alipio, "Frequency dependence of soil parameters: Experimental results, predicting formula and influence on the lightning response of grounding electrodes," IEEE Trans. Power Delivery, Vol. 27, No. 2, 927-935, 2012.
doi:10.1109/TPWRD.2011.2179070

3. Alipio, R. and S. Visacro, "Frequency dependence of soil parameters: Effect on the lightning response of grounding electrodes," IEEE Trans. Electromagn. Compat., Vol. 55, No. 1, 132-139, 2013.
doi:10.1109/TEMC.2012.2210227

4. Visacro, S. and F. H. Silveira, "The impact of the frequency dependence of soil parameters on the lightning performance of transmission lines," IEEE Trans. Electromagn. Compat., Vol. 57, No. 3, 434-441, 2015.
doi:10.1109/TEMC.2014.2384029

5. Alipio, R. and S. Visacro, "Modeling the frequency dependence of electrical parameters of soil," IEEE Trans. Electromagn. Compat., Vol. 56, No. 5, 1163-1171, 2014.
doi:10.1109/TEMC.2014.2313977

6. Sumner, J. S., Principles of Induced Polarization for Geophysical Exploration, Elsevier Scientific, 1976.

7. Roy, A. and A. Apparao, "Depth of investigation in direct current methods," Geophysics, Vol. 36, No. 5, 943-959, 1971.
doi:10.1190/1.1440226

8. Barker, R., "Depth of investigation of collinear symmetrical four-electrode arrays," Geophysics, Vol. 54, No. 8, 1031-1037, 1989.
doi:10.1190/1.1442728

9. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, 2005.

10. Railton, C. J., D. L. Paul, I. J. Craddock, and G. S. Hilton, "The treatment of geometrically small structures in FDTD by the modification of assigned material parameters," IEEE Trans. Antennas Propag., Vol. 53, No. 12, 4129-4136, 2005.
doi:10.1109/TAP.2005.860008

11. Taniguchi, Y., Y. Baba, N. Nagaoka, and A. Ametani, "An improved thin wire representation for FDTD computations," IEEE Trans. Antennas Propag., Vol. 56, No. 10, 3248-3252, 2008.
doi:10.1109/TAP.2008.929447

12. Taniguchi, Y., Y. Baba, N. Nagaoka, and A. Ametani, "An improved arbitrary-radius-wire representation for FDTD electromagnetic and surge calculations," International Conference on Power Systems Transients (IPST2009), Kyoto, Japan, 2009.

13. Okoniewski, M., M. Mrozowski, and M. A. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Microw. Guided Wave Lett., Vol. 7, No. 5, 121-123, 1997.
doi:10.1109/75.569723

14. Kuklin, D., "Extension of thin wire techniques in the FDTD method for Debye media," Progress In Electromagnetics Research M, Vol. 51, 9-17, 2016.
doi:10.2528/PIERM16081804

15. Kelley, D. F., T. J. Destan, and R. J. Luebbers, "Debye function expansions of complex permittivity using a hybrid particle swarm-least squares optimization approach," IEEE Trans. Antennas Propag., Vol. 55, No. 7, 1999-2005, 2007.
doi:10.1109/TAP.2007.900230

16. Roy, A., "Depth of Investigation in Wenner, three-electrode and dipole-dipole DC resistivity methods," Geophysical Prospecting, Vol. 20, No. 2, 329-340, 1972.
doi:10.1111/j.1365-2478.1972.tb00637.x

17. Heiland, C. A., Geophysical Exploration, Prentice-Hall, Inc., New York, 1946.

18. Heidler, F. and J. Cvetic, "A class of analytical functions to study the lightning effects associated with the current front," European Transactions on Electrical Power, Vol. 12, No. 2, 141-150, 2002.
doi:10.1002/etep.4450120209