Vol. 71
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-07-24
Comparative Study of IPM Synchronous Machines with Different Saliency Ratios Considering EVs Operating Conditions
By
Progress In Electromagnetics Research M, Vol. 71, 19-29, 2018
Abstract
In this paper, based on different saliency ratios ρ, three interior permanent magnet (IPM) synchronous machines respectively owning a large ρ, a low ρ and an inverse ρ are proposed for the potential applications of electrical vehicles (EVs). To grasp the impacts of saliency ratio on machine performances, comparative studies are conducted at low speed operation (constant torque region) and high speed operation (constant power region), respectively. In particular, the overload capability referring to magnet demagnetization is emphasized in low-speed heavy-duty operation region. And in high speed, the constant power speed range (CPSR) and high efficiency range are investigated. The main results put in evidence the different behaviors of the three machines in terms of EVs operating conditions. Though all three machines reveal considerable behaviors in CPSR, the inverse saliency ratio machine shows a larger high efficiency region and extends the high efficiency region to a wider speed-and-torque range due to its unique characteristic of Lq<Ld.
Citation
Wenye Wu, Xiaoyong Zhu, Li Quan, Yifeng Hua, and Qing Lu, "Comparative Study of IPM Synchronous Machines with Different Saliency Ratios Considering EVs Operating Conditions," Progress In Electromagnetics Research M, Vol. 71, 19-29, 2018.
doi:10.2528/PIERM18053004
References

1. Chau, K. T., C. Chan, and C. Liu, "Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles," IEEE Trans. Ind. Electron., Vol. 55, No. 6, 2246-2257, 2008.
doi:10.1109/TIE.2008.918403

2. Refaie, A. E., "Motors/generators for traction/propulsion applications: A review," IEEE Veh. Technol. Mag., Vol. 8, No. 1, 90-99, 2013.
doi:10.1109/MVT.2012.2218438

3. Zhu, X. Y., Z. Shu, L. Quan, Z. Xiang, and X. Pan, "Design and multi-condition comparison of two outer-rotor flux-switching permanent magnet motors for in-wheel traction applications," IEEE Trans. Ind. Electron., Vol. 64, No. 8, 6137-6148, 2017.
doi:10.1109/TIE.2017.2682025

4. Pellegrino, G., A. Vagati, P. Guglielmi, and B. Boazzo, "Performance comparison between surface-mounted and interior PM motor drives for electric vehicle application," IEEE Trans. Ind. Electron., Vol. 59, No. 2, 803-811, 2012.
doi:10.1109/TIE.2011.2151825

5. Sarigiannidis, A. G., M. Beniakar, and A. Kladas, "Fast adaptive evolutionary PM traction motor optimization based on electric vehicle drive cycle," IEEE Trans. Veh. Technol., Vol. 66, No. 7, 2017.
doi:10.1109/TVT.2016.2631161

6. Zhu, X. Y., Z. Xiang, L. Quan, W. Wu, and Y. Du, "Multi-mode optimization design methodology for a flux-controllable stator permanent magnet memory motor considering driving cycles," IEEE Trans. Ind. Electron., Vol. 65, No. 7, 5353-5366, Jul. 2017.
doi:10.1109/TIE.2017.2777408

7. Masahiro, O., M. Shigeo, S. Masayuki, and I. Yukinori, "Performance of PMASynRM with ferrite magnets for EV/HEV applications considering productivity," IEEE Trans. Ind. Appl., Vol. 50, No. 4, 2427-2435, 2014.
doi:10.1109/TIA.2013.2294999

8. Ooi, S., S. Morimoto, M. Sanada, and Y. Inoue, "Performance evaluation of a high-power-density PMASynRM with ferrite magnets," IEEE Trans. Ind. Appl., Vol. 49, No. 3, 1308-1315, 2014.
doi:10.1109/TIA.2013.2253293

9. Bianchi, N., M. Fornasiero, and W. Soong, "Selection of PM flux linkage for maximum low-speed torque rating in a PM-assisted synchronous reluctance machine," IEEE Trans. Ind. Appl., Vol. 51, No. 5, 3600-3608, 2015.
doi:10.1109/TIA.2015.2416236

10. Limsuwan, N., T. Kato, K. Akatsu, and R. Lorenz, "Design and evaluation of a variable-flux flux intensifying interior permanent magnet machine," IEEE Trans. Ind. Appl., Vol. 50, No. 2, 1015-1024, 2014.
doi:10.1109/TIA.2013.2273482

11. Limsuwan, N., Y. Shibukawa, D. Reigosa, and R. Lorenz, "Novel design of flux-intensifying interior permanent magnet synchronous machine suitable for self-sensing control at very low speed and power conversion," IEEE Trans. Ind. Appl., Vol. 47, No. 5, 2004-2012, 2011.
doi:10.1109/TIA.2011.2161534

12. Kamiev, K., J. Montonen, M. Ragavendra, J. Pyrhonen, J. Tapia, and M. Niemela, "Design principles of permanent magnet synchronous machines for parallel hybrid or traction application," IEEE Trans. Ind. Electron., Vol. 60, No. 11, 4881-4890, 2013.
doi:10.1109/TIE.2012.2221117

13. Alfredo, V., B. Barbara, G. Paolo, and P. Gianmario, "Design of ferrite-assisted synchronous reluctance machines robust toward demagnetization," IEEE Trans. Ind. Appl., Vol. 50, No. 3, 1768-1779, 2014.
doi:10.1109/TIA.2013.2284302

14. Paolo, G., B. Barbara, A. Eric, P. Gianmario, and V. Alfredo, "Permanent-magnet minimization in PM-assisted synchronous reluctance motors for wide speed range," IEEE Trans. Ind. Appl., Vol. 49, No. 1, 31-41, 2013.
doi:10.1109/TIA.2012.2229372

15. Degano, M., E. Carraro, and N. Bianchi, "Selection criteria and robust optimization of a traction PM-assisted synchronous reluctance motor," IEEE Trans. Ind. Appl., Vol. 51, No. 6, 4383-4391, 2015.
doi:10.1109/TIA.2015.2443091

16. Soong, W. L. and T. Miller, "Field-weakening performance of brushless synchronous AC motor drives," IEEP Elec. Power Appl., Vol. 141, No. 6, 331-340, 1994.
doi:10.1049/ip-epa:19941470

17. Wu, W. Y., X. Zhu, L. Quan, Y. Du, Z. Xiang, and X. Zhu, "Design and analysis of a hybrid permanent magnet assisted synchronous reluctance motor considering magnetic saliency and PM usage," IEEE Appl. Supercond., Vol. 28, No. 3, 1-6, 2017.
doi:10.1109/TASC.2016.2633781

18. Nicola, B. and M. Hanafy, "An analytical approach to design the PM in PMAREL motors robust toward the demagnetization," IEEE Trans. Energy Convers., Vol. 31, No. 2, 800-809, 2016.
doi:10.1109/TEC.2016.2523556

19. Wu, W. Y., X. Zhu, L. Quan, D. Fan, and Z. Xiang, "Characteristic analysis of a less-rare-earth hybrid PM-assisted synchronous reluctance motor for EVs application," AIP Advances, Vol. 7, No. 5, 1-6, 2017.

20. Huynh, T. A. and M. F. Hsieh, "Comparative study of PM-assisted SynRMand IPMSMon constant power speed range for EV applications," IEEE Trans. Magn., Vol. 53, No. 11, 2017.
doi:10.1109/TMAG.2017.2707125

21. Jolly, L., M. Jabbar, and Q. Liu, "Optimization of the constant power speed range of a saturated permanent-magnet synchronous motor," IEEE Trans. Ind. Appl., Vol. 42, No. 4, 1024-1030, 2006.
doi:10.1109/TIA.2006.876067