submit Submit login
Vol. 66
Latest Volume
All Volumes
PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-03-22
Characteristics of Scattering for Anisotropic Particles in Photoelectric Electromagnetic Beam
By
Progress In Electromagnetics Research M, Vol. 66, 41-52, 2018
Abstract
The basic wave types of electromagnetic field propagation in anisotropic media are obtained. Based on the orthogonality relation between the vector wave functions and the orthogonality of trigonometric functions, etc., the expressions of zero order scattering fields and first-order scattered fields of arbitrary electromagnetic beam are presented. A stochastic system identification model for electromagnetic beam scattering by anisotropic particles is established. In the S wave band, the relationships respectively between the scattering field expansion coefficients, the basic wave types of the particle field and the tensor of dielectric constant are studied, and their validity of the model is verified. Taking the elliptical Gaussian beam as an example, the beam scattering characteristics of anisotropic media particles are investigated. The used method is simple, exploring a new approach of researching the electromagnetic beam scattering characteristics from anisotropic medium targets.
Citation
Jin Li, and Xiaoyi Feng, "Characteristics of Scattering for Anisotropic Particles in Photoelectric Electromagnetic Beam," Progress In Electromagnetics Research M, Vol. 66, 41-52, 2018.
doi:10.2528/PIERM17112702
References

1. Haus, H. A., Waves and Fields in Optoelectronics, 320-329, Prentice-Hall, 1984.

2. Wang, Y.-L., W. Ren, and K. Li, "Exact transient field of a horizontal electric dipole excited by a Gaussian pulse on the surface of one-dimensionally anisotropic medium," Progress In Electromagnetics Research B, Vol. 8, 307-318, 2008.
doi:10.2528/PIERB08062005

3. Bass, F. G. and L. Resnick, "The electromagnetic-wave propagation through a stratified inhomogeneous anisotropic medium," Progress In Electromagnetics Research, Vol. 48, 67-83, 2004.
doi:10.2528/PIER03122302

4. Ishimaru, A., Wave Propagation and Scattering in Random Medium, Academic Press, 1978.

5. Graglia, R. D. and P. E. Vslenghi, "Electromagnetic scattering from anisotropic materials," IEEE Trans. on Antennas Propagat., Vol. 35, 232, 1987.
doi:10.1109/TAP.1987.1144074

6. Kokkorakis, G. C., "Scalar equations for scattering by rotationally symmetric radially inhomogeneous anisotropic sphere," Progress In Electromagnetics Research Letters, Vol. 3, 179-186, 2008.
doi:10.2528/PIERL08022201

7. Chen, H.-T., G.-Q. Zhu, and S.-Y. He, "Using genetic algorithm to reduce the radar cross section of three-dimensional anisotropic impedance object," Progress In Electromagnetics Research B, Vol. 9, 231-248, 2008.
doi:10.2528/PIERB08080202

8. Monzon, J. C. and N. J. Damaskos, "Two-dimensional scattering by a homogeneous anisotropic rod," IEEE Trans. on Antennas Propagat., Vol. 35, 232, 1986.

9. Eroglu, A., Y. H. Lee, and J. K. Lee, "Dyadic Green’s functions for multi-layered uniaxially anisotropic media with arbitrarily oriented optic axes," IET Microwaves, Antennas & Propagation, Vol. 5, No. 15, 1779-1788, 2011.
doi:10.1049/iet-map.2010.0499

10. Ren, W., "Contributions to the electromagnetic wave theory of bounded homogeneous anisotropic media," Physical Review E, Vol. 47, 664, 1993.
doi:10.1103/PhysRevE.47.664

11. Chen, S. N. and Q. Q. Hong, Electromagnetic Field for the Anisotropic Medium, Science Press, 2012 (in Chinese).

12. Yang, L. X. and Y. T. Xie, "A novel finite-difference time-domain scheme for electromagnetic scattering by stratified anisotropic plasma under oblique incidence condition," Acta Phys. Sin., Vol. 59, No. 9, 6059, 2010.

13. Mao, S. C. and Z. S. Wu, "Scattering by a homogeneous anisotropic elliptic cylinder: Two-dimensional case," Acta Electronica Sinica, Vol. 38, No. 3, 529, 2010.

14. Li, Y. L. and J. Y. Huang, "The scale-transformation of electromagnetic theory and its applications," Chinese Physics, Vol. 14, 0646, 2005.
doi:10.1088/1009-1963/14/3/027

15. Li, Y. and M. Wang, "Rayleigh scattering for an electromagnetic anisotropic medium sphere," Chinese Physics Letters, Vol. 27, No. 5, 2010.

16. Davis, L. W., "Theory of electromagnetic beams," Physics Review A, Vol. 19, No. 6, 1177-1179, 1979.
doi:10.1103/PhysRevA.19.1177

17. Gouesbet, G., B. Maheu, and G. Grehan, "Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation," J. Opt. Soc. Am. A, Vol. 5, No. 9, 1427-1443, 1998.
doi:10.1364/JOSAA.5.001427

18. Gouesbet, G., G. Grehan, and B. Maheu, "On the generalized Lorenz-Mie theory: First attempt to design a localized approximation to the computation of the coefficients GMN," J. Optics, Vol. 20, No. 1, 31-43, Paris, 1989.
doi:10.1088/0150-536X/20/1/004

19. Lv, B., Laser Optics, 184, Higher Education Press, 2003.

20. Wang, Y. P., D. Z. Chen, and P. C. Liu, Engineering Electrodynamics, Press of Xidian University, 1985.

21. Li, Y. L., J. Li, M. J. Wang, and Q. F. Dong, "A solution of scattered field of particle in electromagnetic beam based on beam series expansion," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 12, 6375-6381, 2014.
doi:10.1109/TAP.2014.2361904