Vol. 43
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-08-15
Characterization of an off -Body Channel at 2.45 GHz in an Underground Mine Environment
By
Progress In Electromagnetics Research M, Vol. 43, 91-100, 2015
Abstract
Underground mines are challenging environments for off-body wireless communication, since the signal propagation is majorly affected by small scale and large scale fading. The use of multiple antennas at the transmitter and the receiver sides is a known technique to combat fading and enhance capacity. In this paper, the channel parameters of a 2×2 Multiple-Input Multiple-Output (MIMO) off-body system are investigated in an underground gold mine and compared to the Single-Input Single-Output (SISO) system parameters. Measurement campaigns were conducted using monopole antennas at a center frequency of 2.45 GHz for both Line Of Sight (LOS) and None Line of Sight (NLOS) scenarios. The measured frequency responses are converted into impulse responses through an Inverse Fourier Transform (IFT). The results show that for a constant transmitted power, the path loss exponents at NLOS are smaller than their counterpart values at LOS. The channel capacity values decrease as the propagation distance increases and when the link is obstructed at NLOS. The RMS delay spread is generally increasing with distance for both LOS and NLOS situations. When a fixed Signal-to-Noise Ratio (SNR) is assumed, MIMO topologies improved the SISO capacity by roughly 8 bps/Hz. The channel characterization results demonstrate that the MIMO configurations provided a remarkable improvement in terms of capacity, coherence bandwidth, and time delay spread compared to the SISO topologies.
Citation
Moulay El Hassan El Azhari, Mourad Nedil, Ismail Ben Mabrouk, Khalida Ghanem, and Larbi Talbi, "Characterization of an off -Body Channel at 2.45 GHz in an Underground Mine Environment," Progress In Electromagnetics Research M, Vol. 43, 91-100, 2015.
doi:10.2528/PIERM15061504
References

1. Li, L., M. C. Vuran, and I. F. Akyildiz, "Characteristics of underground channel for wireless underground sensor networks," Proc. Med-Hoc-Net’07, Corfu, Greece, Jun. 2007.

2. Sun, Z. and I. F. Akyildiz, "Underground wireless communication using magnetic induction," IEEE ICC 2009 Proceedings, 1-5, Jun. 2009.

3. Raheem, S. R., "Remote monitoring of safe and risky regions of toxic gases in underground mines: A preventive safety measures,", Postgraduate Diploma Thesis Report, African Institute for Mathematical Sciences (AIMS), South Africa, 2011, [Online], available: http://users.aims.ac.za/∼soliu/soliu.pdf..

4. Gao, A.-M., Q. H. Xu, H.-L. Peng, W. Jiang, and Y. Jiang, "Performance evaluation of UWB on-body communication under WiMAX off-body EMI existence," Progress In Electromagnetics Research, Vol. 132, 479-498, 2012.
doi:10.2528/PIER12081905

5. Torre, P. V., L. Vallozzi, H. Rogier, M. Moeneclaey, and J. Verhaevert, "Reliable MIMO communication between firefighters equipped with wearable antennas and a base station using space-time codes," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Vol. 10, 2690-2694, Apr. 2011.

6. Khan, I., P. S. Hall, A. A. Serra, A. R. Guraliuc, and P. Nepa, "Diversity performance analysis for on-body communication channels at 2.45GHz," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 956-963, Apr. 2009.
doi:10.1109/TAP.2009.2014530

7. Chatterjee, G. and A. Somkuwar, "Design analysis of wireless sensors in ban for stress monitoring of fighter pilots," 16th IEEE International Conference on Networks, 1-6, Dec. 2008.

8. El-Azhari, M. E., M. Nedil, I. Benmabrouk, and L. Talbi, "Off-body channel characterization at 2.45GHz in underground mine environment," Proc. IEEE Antennas and Propagation Society Int. Symp. (APSURSI) , 251-252, Jul. 6-11, 2014.

9. Khan, I., "Diversity and MIMO for body-centric wireless communication channels,", PhD Thesis Report, University of Birmingham, Sep. 2009, [Online], available: http://etheses.bham.ac.uk/433/1/Khan09PhD.pdf.

10. El-Azhari, M. E., M. Nedil, I. Benmabrouk, L. Talbi, and K. Ghanem, "Off-body LOS and NLOS channel characterization in a mine environment," International Conference on Electrical and Information Technologies (ICEIT), Marrakesh, Morocco, 2015.

11. Mabrouk, I. B., L. Talbi, and M. Nedil, "Performance evaluation of a MIMO system in underground mine gallery," IEEE Antennas Wireless Propag. Lett., Vol. 11, No. 11, 830-833, Jul. 2012.

12. Lienard, M., P. Degauque, J. Baudet, and D. Degardin, "Investigation on MIMO channels in subway tunnels," IEEE J. Sel. Areas Commun., Vol. 21, No. 3, 332-339, Apr. 2003.
doi:10.1109/JSAC.2003.809627

13. Mabrouk, I. B., L. Talbi, M. Nedil, and K. Hettak, "MIMO-UWB channel characterization within an underground mine gallery," IEEE Trans. Antennas Propag., Vol. 60, 4866-4874, Oct. 2012.

14. Mabrouk, I. B., L. Talbi, M. Nedil, and K. Hettak, "Experimental characterization of MIMO-UWB multipath underground mine radio channels," Antennas and Propagation Society International Symposium, 1-2, 2012.

15. Varzakas, P., "Average channel capacity for rayleigh fading spread spectrum MIMO systems," International Journal of Communication Systems, Vol. 19, No. 10, 1081-1087, Dec. 2006.
doi:10.1002/dac.784

16. Molina-Garcia-Pardo, J.-M., M. Lienard, P. Degauque, C. García Pardo, and L. Juan-Llacer, "MIMO channel capacity with polarization diversity in arched tunnels," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1186-1189, 2009.
doi:10.1109/LAWP.2009.2035299

17. Molina-Garcia-Pardo, J.-M., J.-V. Rodríguez, and L. Juan-Llacer, "Polarized indoorMIMO channel measurements at 2.45 GHz," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3818-3828, Dec. 2008.
doi:10.1109/TAP.2008.2005542

18. Khan, I. and P. S. Hall, "Experimental evaluation of MIMO capacity and correlation for narrowband body-centric wireless channels," IEEE Trans. Antennas Propag., Vol. 58, No. 1, 195-202, Jan. 2010.
doi:10.1109/TAP.2009.2025062

19. Hakan, I., "Multiple-input multiple-output system capacity: Antenna and propagation aspects," IEEE Antennas and Propagation Magazine, Vol. 55, No. 1, 253-273, Feb. 2013.
doi:10.1109/MAP.2013.6474541

20. Gesbert, D., M. Shafi, D.-S. Shiu, P. Smith, and A. Naguib, "From theory to practice: An overview of MIMO space-time coded wireless systems," IEEE J. Sel. Areas Commun., Vol. 21, No. 3, 281-302, Apr. 2003.
doi:10.1109/JSAC.2003.809458

21. Goldsmith, A., S. A. Jafar, N. Jindaland, and S. Vishwanath, "Capacity limits of MIMO channels," IEEE J. Sel. Areas Commun., Vol. 21, No. 5, 684-701, 2003.
doi:10.1109/JSAC.2003.810294

22. Hamie, J., "Contributions to cooperative localization techniques within mobile wireless body area networks,", PhD Manuscript, University of Nice-Sophia Antipolis, Nov. 2013.

23. Rosni, R. and R. D’Errico, "Off-body channel modelling at 2.45GHz for two different antennas," Proceedings of the 6th European Conference on Antennas and Propagation (EUCAP), 3378-3382, 2012.

24. Denis, B., N. Amiot, B. Uguen, A. Guizar, C. Goursaud, A. Ouni, and C. Chaudet, "Qualitative analysis of RSSI behavior in cooperative wireless body area networks for mobility detection and navigation applications," 21st IEEE International Conference on Electronics Circuits and Systems (ICECS), 834-837, Dec. 7-10, 2014.

25. Rissafi, Y., L. Talbi, and M. Ghaddar, "Experimental characterization of an UWB propagation channel in underground mines," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 240-246, Jan. 2012.
doi:10.1109/TAP.2011.2167927

26. Rappaport, T. S., "Mobile radiop propagation: Small scale fading and multipath," Wireless Communications: Principle and Practice, 2nd Edition, Prentice Hall, 2001.

27. Svantesson, T. and J. Wallace, "On signal strength and multipath richness in multi-input multi-output systems," Proc. IEEE Int. Conf. on Commun., Vol. 4, 2683-2687, May 2003.

28. Carrasco, H., R. Feick, and H. Hristov, "Experimental evaluation of indoor MIMO channel capacity for compact arrays of planar inverted-F antennas," Microw. Opt. Technol. Lett., Vol. 49, No. 7, 1754-1756, Jul. 2007.
doi:10.1002/mop.22526