Vol. 44
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-10-01
Analysis of a Vertical Interconnection Access by Using Longitudinal Wave Concept Iteratve Process (LWCIP)
By
Progress In Electromagnetics Research M, Vol. 44, 21-30, 2015
Abstract
A new formulation of the Wave Concept Iterative Process (WCIP) method is presented in this work. This approach uses an analysis with the longitudinal components instead of the transverse components. This approach includes decomposing the transverse TM modes into two longitudinal terms: the TM and TEM modes. This approach is applied to model a Vertical Interconnect Access VIA hole. The current density behavior is studied in the two cases with and without VIA hole. Also this method is used to study a SIW slot antenna. Compared to those obtained by available published data, our results show that the proposed method gives convincing results.
Citation
Noureddine D. Sboui, Jamel Hajri, and Henri Baudrand, "Analysis of a Vertical Interconnection Access by Using Longitudinal Wave Concept Iteratve Process (LWCIP)," Progress In Electromagnetics Research M, Vol. 44, 21-30, 2015.
doi:10.2528/PIERM15052107
References

1. Tao, J. W., J. Atechian, R. Ratovondrahata, and H. Baubrand, "Transverse operator of large class of multidielectric waveguides," IEEE Proc., Vol. 137, 135-139, 1990.

2. Schelkunoff, S. A., "Generalized telegraphist’s equations for waveguides," Bell. Syst. Tech. J., Vol. 31, 748-801, Jul. 1952.

3. Solano, M. A., A. Prieto, and A. Vegas, "Comparative study of two different formulation of coupled mode theory for analyzing rectangular dielectric waveguide," Proceedings of the 8th International Conference on Antennas and Propagation, Vol. 1-2, 45-47, Heriot-Watt University, Edinburgh, UK, Mar. 30-Apr. 2, 1993.

4. Amalric, J. L., H. Baudrand, and M. Hollinger, "Various aspects of coupled mode theory for anisotropic partially filled waveguide: Application to a semiconductor loaded with perpendicular induction," 7th European Microwave Conference Copenhagen, 146-149, Denmark, Sep. 1977.

5. Preibisch, J. B., A. Hardock, and C. Schuster, "Physics-based via and waveguide models for efficient SIW simulations in multilayer substrates," IEEE Trans. Microw. Theory Techn., early access, 2015.

6. Rimolo-Donadio, R., X. Gu, Y. Kwark, M. Ritter, B. Archambeault, F. de Paulis, Y. Zhang, J. Fan, H. Br¨uns, and C. Schuster, "Physics-based via and trace models for efficient link simulation on multilayer structuresup to 40GHz," IEEE Trans. Microw. Theory Techn., Vol. 57, No. 8, 2072-2083, Aug. 2009.
doi:10.1109/TMTT.2009.2025470

7. Zhang, Y., J. Fan, G. Selli, M. Cocchini, and F. de Paulis, "Analytical evaluation of via-plate capacitance for multilayer printed circuit boards and packages," IEEE Trans. Microw. Theory Techn., Vol. 56, No. 9, 2118-2128, Sep. 2008.
doi:10.1109/TMTT.2008.2002237

8. Hrizi, H., L. Latrach, N. Sboui, A. Gharsallah, A. Gharbi, and H. Baudrand, "Improving the convergence of the wave iterative method by filtering techniques," Applied Computational Electromagnetic Society Journal, Vol. 26, No. 10, 2011.

9. Latrach, L., N. Sboui, A. Gharsallah, H. Baudrand, and A. Gharbi, "Analysis and design of planar multilayered fss with arbitrary incidence," Applied Computational Electromagnetic Society Journal, Vol. 23, No. 2, 149-154, Jun. 2008.

10. Sboui, N., A. Gharsallah, H. Baudrand, and A. Gharbi, "Global modeling of periodic structure in coplanar wave guide," Microwave and Opt. Techno. Lett., Vol. 43, No. 2, 157-160, Oct. 2004.
doi:10.1002/mop.20406

11. Sboui, N., A. Gharsallah, H. Baudrand, and A. Gharbi, "Global modeling of microwave active circuits by an efficient iterative procedure," IEE Proc. --- Microw. Antennas Propag., Vol. 148, No. 3, 209-212, Jun. 2001.
doi:10.1049/ip-map:20010374

12. Sboui, N., A. Gharsallah, H. Baudrand, and A. Gharbi, "Design and modeling of RF MEMS switch by reducing the number of interfaces," Microwave and Opt. Techno. Lett., Vol. 49, No. 5, 1166-1170, May 2007.
doi:10.1002/mop.22378

13. Zairi, H., A. Gharsallah, A. Gharsallah, A. Gharbi, and H. Baudrand, "Modelization of probe feed excitation using iterative method," Applied Computational Electromagnetic Society Journal, Vol. 19, No. 3, 198-205, Nov. 2004.

14. Yan, L., W. H. K. Wu, and T. J. Cui, "Investigations on the propagation characteristics of the substrate integrated waveguide based on the method of lines," IEE Proc. --- Microw. Antennas Propag., Vol. 152, 35-42, 2005.
doi:10.1049/ip-map:20040726

15. Boozzi, M., A. Georgiandis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas Microwaves," IET Antennas & Propagation, Vol. 5, No. 8, 909-920, Jun. 6, 2011.
doi:10.1049/iet-map.2010.0463

16. Deslandes, D. and K. Wu, "Single-substrate integration technique of planar circuits and waveguide filter," IEEE Trans. Microw. Theory Techn., Vol. 51, No. 2, 593-596, Feb. 2003.
doi:10.1109/TMTT.2002.807820

17. Deslandes, D. and K. Wu, "Design consideration and performance analysis of substrate integrated waveguide components," 32nd European Microwave Conference, 2002.

18. Mikulasek, T., J. Lacik, and W. Raida, "SIW slot antennas utiliwed for 60 GHz channel characterization," Microwave and Opt. Techno. Lett., Vol. 57, No. 6, 1365-1370, Jun. 2015.
doi:10.1002/mop.29093

19. Jian, Z., Y. Yuanwei, Z. Yong, C. Chen, and J. ShiXing, "A high --- Q microwave MEMS resonator," DTIP of MEMS and NOEMS 2007 Stresa, Italy, Apr. 25-27, 2007.

20. Deslandes, D. and K. Wu, "Accurate modeling wave mechanisms and design considerations of a substrate integrated waveguide," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 6, 2516-2526, Jun. 2006.
doi:10.1109/TMTT.2006.875807

21. Zelenchuk, D. and C. Fusco, "Low insertion loss substrate integrated waveguide quasi-elliptic filters for V-band wireless personal area network applications," IEE Proc. --- Microw. Antennas Propag., Vol. 5, No. 8, 921-927, Jun. 6, 2011.
doi:10.1049/iet-map.2010.0362

22. Patel, A., Y. Prashad, A. Vala, and R. Goswami, "Design and performance analysis of metallic posts coupled SIW based multiband passband and stopband filter," Microwave and Opt. Techno. Lett., Vol. 57, No. 6, 1409-1417, Jun. 2015.
doi:10.1002/mop.29105

23. Cassivi, Y., L. Perregrini, K. Wu, and G. Conciauro, "Low-cost and high-Q millimeter-wave resonator using substrate integrated waveguide technique," 32nd European Microwave Conference, 1-4, Milan, Italy, Sep. 2002.

24. Cassivi, Y., L. Perregrini, P. Arcioni, M. Bressan K. Wu, and G. Conciauro, "Dispersion characteristics of substrate integrated rectangular waveguide," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 9, 333-335, Sep. 2002.
doi:10.1109/LMWC.2002.803188

25. Yu, C. and W. Hong, "37-38 GHz substrate integrated filtenna for wireless communication application," Microwave and Opt. Techno. Lett., Vol. 54, No. 2, 346-351, Feb. 2012.
doi:10.1002/mop.26589