Vol. 42

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-07-14

Computational Fluid Dynamics Thermal Prediction of Fault-Tolerant Permanent-Magnet Motor Using a Simplified Equivalent Model

By Wenxiang Zhao, Liyang Chen, Guohai Liu, and Jinghua Ji
Progress In Electromagnetics Research M, Vol. 42, 199-209, 2015
doi:10.2528/PIERM15050402

Abstract

The thermal characteristic of a new out-rotor fault-tolerant permanent-magnet (FTPM) motor is modeled and predicted in this paper. Flow characteristics and thermal characteristics of this FTPM motor are calculated by using computational fluid dynamics method. The key is that an equivalent model is developed to replace the real motor, offering the merits of simplified meshing progress and convenient thermal calculation. Furthermore, the effectiveness of the developed equivalent model has been verified by simulation and experiment. In addition, the temperature distribution of the entire motor is given by using equivalent models. The results can be provided to improve motor thermal performance.

Citation


Wenxiang Zhao, Liyang Chen, Guohai Liu, and Jinghua Ji, "Computational Fluid Dynamics Thermal Prediction of Fault-Tolerant Permanent-Magnet Motor Using a Simplified Equivalent Model," Progress In Electromagnetics Research M, Vol. 42, 199-209, 2015.
doi:10.2528/PIERM15050402
http://jpier.org/PIERM/pier.php?paper=15050402

References


    1. Matyas, A. R., K. A. Biro, and D. Fodorean, "Multi-phase synchronous motor solution for steering applications," Progress In Electromagnetics Research, Vol. 131, 63-80, 2012.
    doi:10.2528/PIER12060507

    2. Mahmoudi, A., S. Kahourzade, N. A. Rahim, H. W. Ping, and N. F. Ershad, "Slot-less torus solid-rotor-ringed line-start axial-flux permanent-magnet motor," Progress In Electromagnetics Research, Vol. 131, 331-355, 2012.
    doi:10.2528/PIER12070308

    3. Zhao, W., M. Cheng, R. Cao, and J. Ji, "Experimental comparison of remedial single-channel operations for redundant flux-switching permanent-magnet motor drive," Progress In Electromagnetics Research, Vol. 123, 189-204, 2012.
    doi:10.2528/PIER11110405

    4. Mahmoudi, A., N. A. Rahim, and H. W. Ping, "Axial-flux permanent-magnet motor design for electric vehicle direct drive using sizing equation and finite element analysis," Progress In Electromagnetics Research, Vol. 122, 467-496, 2012.
    doi:10.2528/PIER11090402

    5. Chen, Q., G. Liu, W. Gong, and W. Zhao, "A new fault-tolerant permanent-magnet machine for electric vehicle applications," IEEE Transactions on Magnetics, Vol. 47, No. 10, 4183-4186, 2011.
    doi:10.1109/TMAG.2011.2146238

    6. Zhao, W., M. Cheng, and K. T. Chau, "Remedial injected-harmonic-current operation of redundant flux-switching permanent-magnet motor drives," IEEE Transactions on Industrial Electronics, Vol. 60, No. 1, 151-159, 2013.
    doi:10.1109/TIE.2012.2186107

    7. Fornasiero, E., N. Bianchi, and S. Bolognani, "Slot harmonic impact on rotor losses in fractional-slot permanent-magnet machines," IEEE Transactions on Industrial Electronics, Vol. 59, No. 6, 2557-2564, 2012.
    doi:10.1109/TIE.2011.2168794

    8. Lin, D., P. Zhou, and W. N. Fu, "A dynamic core loss model for soft ferromagnetic and power ferrite materials in transient finite element analysis," IEEE Transactions on Magnetics, Vol. 40, No. 2, 1318-1321, 2004.
    doi:10.1109/TMAG.2004.825025

    9. Li, G., J. Ojedea, and E. Hoang, "Thermal-electromagnetic analysis for driving cycles of embedded flux-switching permanent-magnet motors," IEEE Transactions on Vehicle Technology, Vol. 61, No. 1, 140-151, 2012.
    doi:10.1109/TVT.2011.2177283

    10. Jungreuthmayer, C., T. Bauml, O. Winter, M. Ganchev, H. Kapeller, A. Haumer, and C. Kral, "A detailed heat and fluid flow analysis of an internal permanent magnet synchronous machine by means of computational fluid dynamics," IEEE Transactions on Industrial Electronics, Vol. 59, No. 12, 4568-4578, 2012.
    doi:10.1109/TIE.2011.2176696

    11. Staton, D., A. Boglietti, and A. Cavagnino, "Solving the more difficult aspects of electric motor thermal analysis," IEEE Transactions on Energy Conversion, Vol. 20, No. 3, 620-628, 2005.
    doi:10.1109/TEC.2005.847979

    12. Valenzuela, M. A. and J. A. Tapia, "Heat transfer and thermal design of finned frames for TEFC variable-speed motors," IEEE Transactions on Industrial Electronics, Vol. 55, No. 10, 3500-3508, 2008.
    doi:10.1109/TIE.2008.928150

    13. Hettegger, M., B. Streibl, and O. Biro, "Measurements and simulations of the convective heat transfer coefficients on the end windings of an electrical machine," IEEE Transaction on Industrial Electronics, Vol. 59, No. 5, 2299-2308, 2012.
    doi:10.1109/TIE.2011.2161656

    14. Boglietti, A., A. Cavagnino, and D. Staton, "Determination of critical parameters in electrical machine thermal models," IEEE Transactions on Industry Applications, Vol. 44, No. 4, 1150-1159, 2008.
    doi:10.1109/TIA.2008.926233

    15. Boglietti, A., A. Cavagnino, D. Staton, M. Shanel, M. Mueller, and C. Mejuto, "Evolution and modern approaches for thermal analysis of electrical machines," IEEE Transactions on Industrial Electronics, Vol. 56, No. 3, 871-882, 2009.
    doi:10.1109/TIE.2008.2011622

    16. Boglietti, A., A. Cavagnino, M. Lazzari, and M. Pastorelli, "A simplified thermal model for variable-speed self-cooled industrial induction motor," IEEE Transactions on Industrial Applications, Vol. 39, No. 4, 945-952, 2003.
    doi:10.1109/TIA.2003.814555

    17. Nerg, J., M. Rilla, and J. Pyrhönen, "Thermal analysis of radial-flux electrical machines with a high power density," IEEE Transactions on Industrial Electronics, Vol. 55, No. 10, 3543-3554, 2008.
    doi:10.1109/TIE.2008.927403

    18. EL-Refaie, A. M., N. C. Harris, T. M. Jahns, and K. M. Rahman, "Thermal analysis of multibarrier interior pm synchronous machine using lumped parameter model," IEEE Transactions on Energy Conversion, Vol. 19, No. 2, 303-309, 2004.
    doi:10.1109/TEC.2004.827011

    19. Mugglestone, J., S. J. Pickering, and D. Lampard, "Effect of geometric changes on the flow and heat transfer in the end region of a TEFC induction motor," Proc. 9th IEEE Int. Conf. Elect. Mach. Drives, 40-44, Canterbury, U.K., 1999.
    doi:10.1049/cp:19990987

    20. Marignetti, F. and V. Delli Colli, "Thermal analysis of an axial flux permanent-magnet synchronous machine," IEEE Transactions on Magnetics, Vol. 45, No. 7, 2970-2975, 2009.
    doi:10.1109/TMAG.2009.2016415