Vol. 33
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-09-28
Experimental Results for Microwave Tomography Imaging Based on FDTD and GA
By
Progress In Electromagnetics Research M, Vol. 33, 69-82, 2013
Abstract
The authors recently presented a novel microwave tomography method for creating quantitative images of the electromagnetic properties of the interior of unknown objects [1]. This method is based on a time-domain inverse solver which uses the multi-illumination technique and includes the dispersive and heterogeneous characteristic of the object. The Frequency Dependent Finite Difference Time Domain ((FD)2TD) and Genetic Algorithm (GA) technique were utilized for determining unknown characteristics of the object. In the present paper, the calibration of measured data are described and image reconstruction results for preliminary experiments performed at the University of Manitoba's Microwave Tomography Laboratory and at the Institut Frsenel are presented.
Citation
Abas Sabouni, and Sima Noghanian, "Experimental Results for Microwave Tomography Imaging Based on FDTD and GA," Progress In Electromagnetics Research M, Vol. 33, 69-82, 2013.
doi:10.2528/PIERM13080610
References

1. Sabouni, A., S. Noghanian, and S. Pistorius, "A global optimization technique for microwave imaging of the inhomogeneous and dispersive breast," Canadian Journal of Electrical and Computer Engineering, Vol. 35, No. 1, 15-24, 2010.
doi:10.1109/CJECE.2010.5783380

2. Pastorino, M., S. Caorsi, and A. Massa, "A global optimization technique for microwave nondestructive evaluation," IEEE Transactions on Instrumentation and Measurement, Vol. 51, No. 4, 666-673, 2002.
doi:10.1109/TIM.2002.803084

3. Meaney, P. M., M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, C. A. Kogel, S. P. Poplack, and K. D. Paulsen, "Initial clinical experience with microwave breast imaging in women with normal mammography," Academic Radiology, Vol. 14, No. 2, 207-218, 2007.
doi:10.1016/j.acra.2006.10.016

4. Song, L. P., C. Yu, and Q. H. Liu, "Through-wall imaging (TWI) by radar: 2-D tomographic results and analyses," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 12, 2793-2798, 2005.
doi:10.1109/TGRS.2005.857914

5. Hansen, P. C., Rank-deficient and Discrete Ill-posed Problems Numerical Aspects of Linear Inversion:, SIAM, Philadelphia, PA, 1998.
doi:10.1137/1.9780898719697

6. Barkeshli, S. and R. G. Lautzenheiser, "An iterative method for inverse scattering problems based on an exact gradient search," Radio Science, Vol. 29, 1119-1130, 1994.
doi:10.1029/94RS00830

7. Kleinman, R. E. and P. M. van den Berg, "A modified gradient method for two-dimensional problems in tomography," Journal of Computational and Applied Mathematics, Vol. 42, No. 1, 17-35, 1992.
doi:10.1016/0377-0427(92)90160-Y

8. Van den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, No. 6, 1607-1620, 1997.
doi:10.1088/0266-5611/13/6/013

9. Chew, W. and Y. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted born iterative method," IEEE Transactions on Medical Imaging, Vol. 9, No. 2, 218-225, 1990.
doi:10.1109/42.56334

10. Caorsi, S., M. Donelli, and A. Massa, "Detection, location, and imaging of multiple scatterers by means of the iterative multiscaling method," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 4, 1217-1228, 2004.
doi:10.1109/TMTT.2004.825699

11. Habashy, T. M. and A. Abubakar, "A general framework for constraint minimization for the inversion of electromagnetic measurements," Progress In Electromagnetics Research, Vol. 46, 265-312, 2004.
doi:10.2528/PIER03100702

12. Bozza, G., C. Estatico, M. Pastorino, and A. Randazzo, "An inexact newton method for microwave reconstruction of strong scatterers," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 61-64, 2006.
doi:10.1109/LAWP.2006.870360

13. Franchois, A. and A. G. Tijhuis, "A quasi-Newton reconstruction algorithm for a complex microwave imaging scanner environment," Radio Science, Vol. 38, No. 2, 1-13, 2003.
doi:10.1029/2001RS002590

14. Joachimowicz, N., J. Mallorqui, J. C. Bolomey, and A. Broquets, "Convergence and stability assessment of Newton-Kantorovich reconstruction algorithms for microwave tomography," IEEE Transactions on Medical Imaging, Vol. 17, No. 4, 562-570, 1998.
doi:10.1109/42.730401

14. Franchois, A. and C. Pichot, "Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 2, 203-215, 1997.
doi:10.1109/8.560338

16. Pastorino, M., "Stochastic optimization methods applied to microwave imaging: A review," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 538-548, 2007.
doi:10.1109/TAP.2007.891568

17. Caorsi, S., A. Massa, M. Pastorino, and M. Donelli, "Improved microwave imaging procedure for nondestructive evaluations of two-dimensional structures," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 1386-1397, 2004.
doi:10.1109/TAP.2004.830254

18. Donelli, M. and A. Massa, "Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 5, 1761-1776, 2005.
doi:10.1109/TMTT.2005.847068

19. Donelli, M., G. Franceschini, A. Martini, and A. Massa, "An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, 298-312, 2006.
doi:10.1109/TGRS.2005.861412

20. Gilmore, C., P. Mojabi, A. Zakaria, M. Ostadrahimi, C. Kaye, S. Noghanian, L. Shafai, S. Pistorius, and J. LoVetri, "A wideband microwave tomography system with a novel frequency selection procedure," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 4, 894-904, 2010.
doi:10.1109/TBME.2009.2036372

21. Meaney, P., K. Paulsen, A. Hartov, and R. Crane, "An active microwave imaging system for reconstruction of 2-D electrical property distributions," IEEE Transactions on Biomedical Engineering, Vol. 42, No. 10, 1017-1026, 1995.
doi:10.1109/10.464376

22. Eyraud, C., J. M. Geffrin, A. Litman, P. Sabouroux, and H. Giovannini, "Drift correction for scattering measurements," Applied Physics Letters, Vol. 89, 2441041-2441043, 2006.

23. Kolundzija, B., J. Ognjanovic, M. Tasic, D. Olcan, M. Paramentic, D. Sumic, M. Kostic, and M. Paviovic, "WIPL-D pro V7.1: 3D electromagnetic solver," Tech. Rep., WIPL-D Ltd, Europe, 2009.

24. Meaney, P., M. Fanning, D. Li, S. Poplack, and K. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 1841-1853, 2000.
doi:10.1109/22.883861

25. Geffrin, J. and A. Joisel, "Comparison of measured and simulated incident and scattered ¯elds in a 434MHz scanner," Proceedings of the 22th URSI General Assembly, 2002.

26. Gunnarsson, T., "Quantitative microwave breast phantom imaging using 2.45 GHz system," International Union of Radio Science General Assembly, 2008.

27. Geffrin, J. M., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental set-up and measurement precision," Inverse Problems, Vol. 21, S117-S130, 2005.
doi:10.1088/0266-5611/21/6/S09

28. Franchois, A., A. Joisel, C. Pichot, and J. C. Bolomey, "Quantitative microwave imaging with a 2.45 GHz planar microwave camera," IEEE Transactions on Medical Imaging, Vol. 17, No. 4, 550-561, 1998.
doi:10.1109/42.730400

29. Belkebir, K. and M. Saillard, "Special section on testing inversion algorithms against experimental data," Inverse Problems, Vol. 17, 1565-1571, 2001.
doi:10.1088/0266-5611/17/6/301

30. Meaney, P., K. Paulsen, A. Hartov, and R. Crane, "Microwave imaging for tissue assessment: Initial evaluation in multitarget tissue-equivalent phantoms," IEEE Transactions on Biomedical Engineering, Vol. 43, 878-890, 1996.
doi:10.1109/10.532122

31. Semenov, S., R. Svenson, A. Bulyshev, A. Souvorov, A. Nazarov, Y. Sizov, V. Posukh, A. Pavlovsky, P. Repin, and G. Tatsis, "Spatial resolution of microwave tomography for detection of myocardial ischemia and infarction-experimental study on two-dimensional models," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 4, 538-544, 2000.
doi:10.1109/22.842025