Vol. 30

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-03-19

A Dual-Band Terahertz Metamaterial Based on a Hybrid 'h '-Shaped Cell

By Wanyi Guo, Lianxing He, Hao Sun, Hongwei Zhao, Biao Li, and Xiao-Wei Sun
Progress In Electromagnetics Research M, Vol. 30, 39-50, 2013
doi:10.2528/PIERM13011403

Abstract

We present a dualband terahertz metamaterial based on a hybrid 'H'-shaped cell of different sizes. The proposed 'H'-shaped metamaterial (HSM) structure, fabricated on a quartz (SiO2) substrate, exhibits two intense electrical resonances at ~0.95 THz and ~1.26 THz, respectively. Extracted effective permittivity show negative values in 0.95-1.01 THz and 1.26-1.42 THz bands. Measured results from the terahertz time-domain spectroscopy (THz-TDS) experiments show good agreement with the simulated results.

Citation


Wanyi Guo, Lianxing He, Hao Sun, Hongwei Zhao, Biao Li, and Xiao-Wei Sun, "A Dual-Band Terahertz Metamaterial Based on a Hybrid 'h '-Shaped Cell," Progress In Electromagnetics Research M, Vol. 30, 39-50, 2013.
doi:10.2528/PIERM13011403
http://jpier.org/PIERM/pier.php?paper=13011403

References


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
    doi:10.1109/22.798002

    3. Yen, T. J., W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science, Vol. 303, No. 5663, 1494-1496, 2004.
    doi:10.1126/science.1094025

    4. Padilla, W. J. , A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averott, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett., Vol. 96, 107401(1)-107401(4), 2006.

    5. Tuniz, A., B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, "Drawn metamaterials with plasmonic response at terahertz frequencies," App. Phys. Lett., Vol. 96, 191101(1)-191101(3), 2010.

    6. Chen, H.-T., W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, "A metamaterial solid-state terahertz phase modulator," Nature Photonics, Vol. 3, 148-151, 2009.
    doi:10.1038/nphoton.2009.3

    6. Cheng, Y., H. Yang, Z. Cheng, and N. Wu, "Perfect metamaterial absorber based on a split-ring-cross resonator," J. Appl. Phys. A, Vol. 102, 99-103, 2010.

    8. Choi, M., S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y. Hee, N. Park, and B. Min, "A terhaertz metamaterial with unnaturally high refractive index," Nature, Vol. 470, No. 09776, 369-373, 2011.
    doi:10.1038/nature09776

    9. Chen, H.-S., L.-X. Ran, J. Tao, F. Huang, X.-M. Zhang, and K.-S. Chen, "Metamaterial exhibiting left-handed properties over multiple frequency bands," J. Appl. Phys., Vol. 96, 5338, 2004.
    doi:10.1063/1.1803942

    10. Sydoruk, O., O. Zhuromskyy, E. Shamonina, and L. Solymar, "Phono-like dispersion curves of magnetoinductive waves," Appl. Phys. Lett., Vol. 87, 072501, 2005.
    doi:10.1063/1.2011789

    11. Gorkunov, M. V., L. V. Shadrivov, and Y. S. Kivshar, "Enhanced parametric processes in binary metamaterials," Appl. Phys. Lett., Vol. 88, 071912, 2009.

    12. Wen, Q. Y., H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," App. Phys. Lett., Vol. 95, 241111(1)-241111(3), 2009.

    13. Yu, Y., C. Bingham, T. Tyler, S. Palit, R. Hand, W. J. Padila, N. M. Jokerst, and S. A. Cummer, "A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators," App. Phys. Lett., Vol. 93, No. 19, 19110(1)-19110(3), 2008.

    14. Yu, Y., C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, "Dual-band planar electric metamaterial in the terahertz regime," Opt. Express, Vol. 16, No. 13, 9746-9752, 2008.
    doi:10.1364/OE.16.009746

    15. Ekmekci, E., K. Topalli, T. Akin, and G. Turhan-Sayan, "A tunable multi-band metamaterial design using micro-split SRR structures," Opt. Express, Vol. 17, No. 18, 16406-16058, 2009.
    doi:10.1364/OE.17.016046

    16. Tao, H., C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," J. Appl. Phys., Vol. 43, 225102-225106, 2010.

    17. Ma, Y., Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, "A terahertz polarization insensitive dual band metamaterial absorber," Opt. Lett., Vol. 36, No. 6, 945-947, 2011.
    doi:10.1364/OL.36.000945

    18. Lee, H.-M. and H.-S. Lee, "A dualband metamaterial absorber based with resonant-magnetic structures," Progress In Electromagnetics Research Letters, Vol. 33, 1-12, 2012.

    19. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617(1)-036617(11), 2005.
    doi:10.1103/PhysRevE.71.061902

    20. Han, N. R., Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, "Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates," Opt. Express,, Vol. 19, No. 8, 6991-6998, 2011.
    doi:10.1364/OE.19.006990

    21. Guo, W., L. He, B. Li, T. Teng, and X.-W. Sun, "A wideband and dual-resonant terahertz metamaterial using a modified SRR structure," Progress In Electromagnetics Research, Vol. 134, 289-299, 2013.