Vol. 25

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-08-22

Electromagnetic Susceptibility Model of Discontinuous Microstrip Circuits Under Plane Wave Illumination

By Shourong Li, Ying Li, Zhen Sun, and Fan Wang
Progress In Electromagnetics Research M, Vol. 25, 223-237, 2012
doi:10.2528/PIERM12070604

Abstract

The electromagnetic susceptibility model of discontinuous microstrip circuits with the presence of a uniform plane incident wave is established. First, the analytical expressions are modeled as equivalent voltage and current sources for discussing the global effect of the incident plane wave on the associated interconnects. Then, these field-induced equivalent source expressions are incorporated into ADS circuit solver, and a fast model is established for analyzing the output responses of discontinuous microstrip circuits, such as the cross bend, the band-rejection filter and the single-stage amplifier. The corresponding simulation results from the proposed model are validated by comparing the results from both simulation and measurement. The results also show that the incident plane wave may influence the output terminal responses significantly, and the proposed approach would be an efficient method to solve the electromagnetic susceptibility problems associated with the discontinuous microstrip circuits.

Citation


Shourong Li, Ying Li, Zhen Sun, and Fan Wang, "Electromagnetic Susceptibility Model of Discontinuous Microstrip Circuits Under Plane Wave Illumination," Progress In Electromagnetics Research M, Vol. 25, 223-237, 2012.
doi:10.2528/PIERM12070604
http://jpier.org/PIERM/pier.php?paper=12070604

References


    1. Ramdani, M., E. Sicard, A. Boyer, S. Ben Dhia, J. J. Whalen, T. H. Hubing, M. Coenen, and O. Wada, "The electromagnetic compatibility of integrated circuits --- Past, present, and future," IEEE Trans. on Electromagn. Compat., Vol. 51, No. 1, 78-100, 2009.
    doi:10.1109/TEMC.2008.2008907

    2. Du, Y. and B. Liu, "A numerical method for electromagnetic scattering from dielectric rough surfaces based on the stochastic second degree method," Progress In Electromagnetics Research, Vol. 97, 327-342, 2009.
    doi:10.2528/PIER09092501

    3. Soproni, V. D. , S. M. Vicas, T. Leuca, M. N. Arion, F. I. Hathazi, and C. O. Molnar, "High frequency electromagnetic field modeling and experimental validation of the microwave drying of wheat seeds," Progress In Electromagnetics Research B, Vol. 41, 419-439, 2012.

    4. Lagos, J. L. and F. Fiori, "Worst-case induced disturbances in digital and analog interchip interconnects by an external electromagnetic plane wave --- Part I: Modeling and algorithm," IEEE Trans. on Electromagn. Compat., Vol. 53, No. 1, 178-184, 2011.
    doi:10.1109/TEMC.2010.2085005

    5. Tsai, H. C., "Investigation into time-and-frequency-domain EMI-induced noise in bistable multi-vibrator," Progress In Electromagnetics Research, Vol. 100, 327-349, 2010.
    doi:10.2528/PIER09112904

    6. Han, S. M., J.-J. Bang, C.-S. Huh, and J.-S. Choi, "A PCB noise analysis regarding EMP penetration using an electromagnetic topology method," Progress In Electromagnetics Research, Vol. 122, 15-27, 2012.
    doi:10.2528/PIER11062001

    7. Xie, H., J. Wang, R. Fan, and Y. Liu, "Spice models for radiated and conducted susceptibility analyses of multiconductor shielded cables," Progress In Electromagnetics Research, Vol. 103, 241-257, 2010.
    doi:10.2528/PIER10020506

    8. Rachidi, F., "Formulation of the field-to-transmission line coupling equations in terms of magnetic excitation field," IEEE Trans. on Electromagn. Compat., Vol. 35, No. 3, 404-407, 1993.
    doi:10.1109/15.277316

    9. Bernardi, P. and R. Cicchetti, "Response of a planar microstrip line excited by an external electromagnetic field," IEEE Trans. on Electromagn. Compat., Vol. 32, No. 2, 98-105, 1990.
    doi:10.1109/15.52405

    10. Tesche, F. M., M. V. Ianoz, and T. Karlsson, "EMC Analysis Methods and Computational Models," Wiley, 1997.

    11. Khazaka, R. and M. Nakhla, "Analysis of high-speed interconnects in the presence of electromagnetic interference," IEEE Trans. on Micro. Theory and Tech., Vol. 46, No. 7, 940-947, 1998.
    doi:10.1109/22.701446

    12. Liu, E. X., E. P. Li, L. W. Li, and Z. Shen, "Finite-difference time-domain macromodel for simulation of electromagnetic interference at high-speed interconnects," IEEE Trans. on Magn., Vol. 41, No. 1, 65-71, 2005.
    doi:10.1109/TMAG.2004.839733

    13. Taylor, C. D., R. S. Satterwhite, and C. W. Harrison, "The response of a terminated two-wire transmission line excited by a nonuniform electromagnetic field," IEEE Trans. on Antennas and Propag., Vol. 13, No. 6, 987-989, 1965.
    doi:10.1109/TAP.1965.1138574

    14. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Boston, 2000.

    15. Silva, A. O., R. Bertholdo, M. G. Schiavetto, B.-H. V. Borges, S. J. L. Ribeiro, Y. Messaddeq, and M. A. Romero, "Comparative analysis between experimental characterization results and numerical FDTD modelling of self-assembled photonic crystals," Progress In Electromagnetics Research B, Vol. 23, 329-342, 2010.
    doi:10.2528/PIERB10060404

    16. Lan, J., Y. Yang, and J. Y. Dai, "Applications of a three-dimensional FDTD method with weakly conditional stability to the analysis of microstrip filters with fine scale structures," Progress In Electromagnetics Research Letters, Vol. 27, 101-115, 2011.
    doi:10.2528/PIERL11082213

    17. Dzulkipli, I. , M. H. Jamaluddin, R. Ngah, M. R. B. Kamarudin, N. Seman, and M. K. A. Rahim, "Mutual coupling analysis using FDTD for dielectric resonator antenna reflectarray radiation prediction," Progress In Electromagnetics Research B, Vol. 41, 121-136, 2012.

    18. Wang, J., W.-Y. Yin, J.-P. Fang, and Q.-F. Liu, "Transient responses of coaxial cables in an electrically large cabin with slots and windows illuminated by an electromagnetic pulse," Progress In Electromagnetics Research, Vol. 106, 1-16, 2010.
    doi:10.2528/PIER10060708

    19. Xie, H. Y., J. G. Wang, and R. Y. Fan, "A hybrid FDTD-SPICE method for transmission lines excited by a nonuniform incident Wave," IEEE Trans. on Electromagn. Compat., Vol. 51, No. 3, 811-817, 2009.
    doi:10.1109/TEMC.2009.2020913

    20. Cheldavi, A. and P. Nayeri, "Analysis of V transmission lines response to external electromagnetic fields," Progress In Electromagnetics Research, Vol. 68, 297-315, 2007.
    doi:10.2528/PIER06093003

    21. Gupta, K. C., R. Garg, I. Bahl, and P. Bhartia, Microstrip Line and Slotlines, 2nd Ed., Artech House, Boston, 1996.

    22. Leone, M. and H. L. Singer, "On the coupling of an external electromagnetic field to a printed circuit board trace," IEEE Trans. on Electromagn. Compat., Vol. 41, No. 4, 418-424, 1999.
    doi:10.1109/15.809842

    23. Hsieh, H. C., C. N. Chiu, M. S. Lin, C. H. Wang, and C. H. Chen, "An equation-based hybrid method for predicting radiated susceptibility responses of RF/Microwave circuits," IEEE Trans. on Electromagn. Compat., Vol. 53, No. 2, 339-348, 2011.
    doi:10.1109/TEMC.2010.2095858

    24. Li, E. P., E. X. Liu, L. W. Li, and M. S. Leong, "A coupled efficient and systematic full-wave time-domain macromodeling and circuit simulation," IEEE Transactions on Advanced Packaging, Vol. 27, No. 1, 1-11, 2004.
    doi:10.1109/TADVP.2004.828073

    25. Jin, H. F., E. P. Li, and E. X. Liu, "A novel integrated approach for simulation of electromagnetic susceptibility problem," 2005 International Symposium on Electromagnetic Compatibility, Vol. 2, 446-450, 2005.

    26. Hsieh, H.-C., J. S. Chen, C.-H. Wang, C.-N. Chiu, M.-S. Lin, and C. H. Chen, "A fast analysis of electromagnetic immunity responses of RF amplifier circuit under CW/digital-modulation schemes," 2011 IEEE International Symposium on Electromagnetic Compatibility (EMC), 724-728, 2011.
    doi:10.1109/ISEMC.2011.6038404