Vol. 25

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-08-14

Electromagnetic Scattering from a Multilayered Surface with Lossy Inhomogeneous Dielectric Profiles for Remote Sensing of Snow

By Kaijun Song, Xiaobing Zhou, and Yong Fan
Progress In Electromagnetics Research M, Vol. 25, 197-209, 2012
doi:10.2528/PIERM12063004

Abstract

A multilayered backscattering model for a lossy medium has been presented in this paper. This multilayered model has been used to calculate the total surface reflection coefficients of a snow pack for both horizontal and vertical co-polarizations. The total surface reflection coefficients include contributions from both surface and volumetric backscattering. The backscattering coefficients calculated by this model were compared with in situ measurements on dry and wet snow. Results show that good agreements are obtained between the model and measurements for the co-polarization modes, especially for the snow with less liquid water content.

Citation


Kaijun Song, Xiaobing Zhou, and Yong Fan, "Electromagnetic Scattering from a Multilayered Surface with Lossy Inhomogeneous Dielectric Profiles for Remote Sensing of Snow," Progress In Electromagnetics Research M, Vol. 25, 197-209, 2012.
doi:10.2528/PIERM12063004
http://jpier.org/PIERM/pier.php?paper=12063004

References


    1. Yan, S. H., X. B. Wu, and Z. Z. Chen, "Remote sensing with TDMF radar: Some preliminary results," Progress In Electromagnetics Research Letters, Vol. 14, 79-90, 2010.
    doi:10.2528/PIERL10022405

    2. Storvold, R., E. Malnes, Y. Larsen, K. A. H¿gda, S. E. Hamran, K. MÄuller, and K. A. Langley, "SAR remote sensing of snow parameters in Norwegian areas-current status and future perspective," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1751-1759, 2006.
    doi:10.1163/156939306779292192

    3. Chen, K. S., T. D. Wu, and J. C. Shi, "A model-based inversion of rough soil surface parameters from radar measurements," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 2, 173-200, 2001.
    doi:10.1163/156939301X01336

    4. Wang, H., A. N. Arslan, J. Pulliainen, and M. Hallikainen, "Microwave emission model for wet snow by using radiative transfer and strong fluctuation theory--- Abstract," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 1, 57-59, 2001.
    doi:10.1163/156939301X00634

    5. Arslan, A. N., H. Wang, J. Pulliainen, and M. Hallikainen, "Effective permittivity of wet snow using strong fluctuation theory --- Abstract," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 1, 57-59, 2001.
    doi:10.1163/156939301X00625

    6. Boyarskii, D. A. and V. V. Tikhonov, "The influence of stratigraphy on microwave radiation from natural snow cover," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 9, 1265-1285, 2000.
    doi:10.1163/156939300X01201

    7. Hosseinmostafa, A. R., V. I. Lytle, K. C. Jezek, S. P. Gogineni, S. F. Ackley, and R. K. Moore, "Comparison of radar backscatter from Antarctic and Arctic sea ice," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 3, 421-438, 1995.

    8. Boyarskii, D. A., V. V. Tikhonov, N. I. Kleeorin, and V. G. Mirovskii, "Inclusion of scattering losses in the models of the eFFective permittivity of dielectric mixtures and applications to wet snow," Journal of Electromagnetic Waves and Applications, Vol. 8, No. 11, 1395-1410, 1994.

    9. Kanagaratnam, P., T. Markus, V. Lytle, B. Heavey, P. Jansen, G. Prescott, and S. P. Gogineni, "Ultrawideband radar measurements of thickness of snow over sea ice," IEEE Trans. on Geosci. Remote Sens., Vol. 45, No. 9, 2715-2724, 2007.
    doi:10.1109/TGRS.2007.900673

    10. Luojus, K. P., J. T. Pulliainen, S. J. Metsamaki, and M. T. Hallikainen, "Snow-covered area estimation using satellite radar wide-swath images," IEEE Trans. on Geosci. Remote Sens., Vol. 45, No. 4, 978-989, 2007.
    doi:10.1109/TGRS.2006.888864

    11. Yackel, J. J. and D. G. Barber, "Observations of snow water equivalent change on landfast first-year sea ice in winter using synthetic aperture radar data," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 4, 1005-1015, 2007.
    doi:10.1109/TGRS.2006.890418

    12. Roy, V., K. Goita, A. Royer, A. E. Walker, and B. E. Goodison, "Snow water equivalent retrieval in a canadian boreal environment from microwave measurements using the HUT snow emission model," IEEE Trans. on Geosci. Remote Sens., Vol. 42, No. 9, 1850-1859, 2004.
    doi:10.1109/TGRS.2004.832245

    13. Arslan, A. N. , H. Wang, J. Pullianinen, and M. Hallikainen, "Scattering from wet snow by applying strong fluctuation theory," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 7, 1009-1024, 2003.
    doi:10.1163/156939303322519081

    14. Baghdadi, N., Y. Gauthier, and M. Bernier, "Capability of multitemporal ERS-1 SAR data for wet-snow mapping," Remote Sens. Environ., Vol. 60, No. 2, 174-186, 1997.
    doi:10.1016/S0034-4257(96)00180-0

    15. Nagler, T. and H. Rott, "Retrieval of wet snow by means of multitemporal SAR data," IEEE Trans. on Geosci. Remote Sens., Vol. 38, No. 2, 754-765, 2000.
    doi:10.1109/36.842004

    16. Baghdadi, N., Y. Gauthier, M. Bernier, and J.-P. Fortin, "Potential and limitations of RADARSTAT SAR data for wet snow monitoring," IEEE Trans. on Geosci. Remote Sens., Vol. 38, No. 1, 316-320, 2000.
    doi:10.1109/36.823925

    17. Kendra, J. R., K. Sarabandi, and F. T. Ulaby, "Radar measurements of snow: Experiment and analysis," IEEE Trans. on Geosci. Remote Sens., Vol. 36, No. 3, 864-879, 1998.
    doi:10.1109/36.673679

    18. Shi, J. and J. Dozier, "Inferring snow wetness using C-band data from SIR-C's polarimetric synthetic aperture radar," IEEE Trans. on Geosci. Remote Sens., Vol. 33, No. 4, 905-914, 1995.
    doi:10.1109/36.406676

    19. Ulaby, F. T., P. Siqueira, A. Nashashibi, and K. Sarabandi, "Semi-empirical model for radar backscatter from snow at 35 and 95 GHz," IEEE Trans. on Geosci. Remote Sens., Vol. 34, No. 5, 91059-91065, 1996.

    20. Fung, A. K., Microwave Scattering and Emission Models and Their Applications, Artech House, Norwood, MA, 1994.

    21. Ulaby, F. T., R. K. Moore, and A. K. Fung, "Microwave Remote Sensing, Active and Passive," Addison-Wesley, Norwood, 1981.

    22. Guo, J., L. Tsang, E. G. Josberger, A. W. Wood, J.-N. Hwang, and D. P. Lettenmaier, "Mapping the spatial distribution and time evolution of snow water equivalent with passive microwave measurements," IEEE Trans. on Geosci. Remote Sens., Vol. 41, No. 3, 612-621, 2003.
    doi:10.1109/TGRS.2003.808907

    23. Fung, A. K., Z. Li, and K. S. Chen, "Backscattering from a randomly rough dielectric surface," IEEE Trans. on Geosci. Remote Sens., Vol. 30, No. 2, 356-369, 1992.
    doi:10.1109/36.134085

    24. Song, K., X. Zhou, and Y. Fan, "Empirically adopted IEM for retrieval of soil moisture from radar backscattering coeFFIcients," IEEE Trans. on Geosci. Remote Sens., Vol. 47, No. 6, 1662-1672, 2009.
    doi:10.1109/TGRS.2008.2009061

    25. Song, K., X. Zhou, and Y. Fan, "Retrieval of soil moisture content from microwave backscattering using a modiFIed IEM model," Progress In Electromagnetics Research B, Vol. 26, 383-399, 2010.
    doi:10.2528/PIERB10072905

    26. Song, K., X. Zhou, and Y. Fan, "Multilayer soil model for improvement of soil moisture estimation using the small perturbation method," Journal of Applied Remote Sensing, Vol. 3, No. 1, 033567, 2009.
    doi:10.1117/1.3277666