Vol. 25

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-06-19

Electric-Field Distributions of Dielectric Single Layers of Spheres with Different Compactness

By Angel Andueza, Paola Morales, and Joaquín Sevilla
Progress In Electromagnetics Research M, Vol. 25, 13-26, 2012
doi:10.2528/PIERM12042012

Abstract

The internal electric-field distribution from single layers of dielectric spheres with high refractive index (n=2.65) has been analyzed for a number of different compactness cases by FDTD (Finite-Difference Time-Domain) method. The field distributions from the transmission spectra were compared with the internal electric-field distribution of the Mie modes of an isolated sphere. In general, the agreement is very good in almost all cases studied. The results show that TE and TM Mie modes are the origin of the resonances in the transmission spectra of the single layers. The resonances of the monolayer attributed to TE11 and TM11 Mie modes are only excited for compactness values lower than 0.38, suggesting a dependence of periodical arrangement effects for these modes. Moreover, the field distribution corresponding to some of the dips in the spectrum cannot be directly attributed to Mie modes (TE21). The result indicates these are formed by degenerated or weakly coupled Mie modes induced by the periodic structure.

Citation


Angel Andueza, Paola Morales, and Joaquín Sevilla, "Electric-Field Distributions of Dielectric Single Layers of Spheres with Different Compactness," Progress In Electromagnetics Research M, Vol. 25, 13-26, 2012.
doi:10.2528/PIERM12042012
http://jpier.org/PIERM/pier.php?paper=12042012

References


    1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 20, 2059-2062, 1987.
    doi:10.1103/PhysRevLett.58.2059

    2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, No. 23, 2486-2489, 1987.
    doi:10.1103/PhysRevLett.58.2486

    3. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Cristal, Molding the Flow of Light, Princeton University Press, New Yersey, 2005.

    4. Soukoulis, C. M., Photonic Band Gap Materialst, Kluwer Academic Publishers, Dordrecht, 1996.
    doi:10.1007/978-94-009-1665-4

    5. Miyazaki, H. and K. Ohtaka, "Near-field images of a monolayer of periodically arrayed dielectric spheres," Phys. Rev. B, Vol. 58, No. 11, 6920-6937, 1998.
    doi:10.1103/PhysRevB.58.6920

    6. Kondo, T., S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, "Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres," Phys. Rev. B, Vol. 70, No. 23, 1-6, 2004.

    7. Kondo, T., M. Hangyo, S. Yamaguchi, S. Yano, Y. Segawa, and K. Ohtaka, "Transmission characteristics of a two-dimensional photonic crystal array of dielectric spheres using subterahertz time domain spectroscopy," Phys. Rev. B, Vol. 3, 331111-331114, 2002.

    8. Kurokawa, Y., Y. Jimba, and H. Miyazaki, "Optical band structure and near-fieldintensity of a periodically arrayed monolayer of dielectric spheres on dielectric substrate of finite thickness," Phys. Rev. B, Vol. 70, No. 15, 1551171-1551179, 2004.
    doi:10.1103/PhysRevB.70.155107

    9. Kurokawa, Y., Y. Jimba, and H. Miyazaki, "Internal electric-field intensity distribution of a monolayer of periodically arrayed dielectric spheres," Phys. Rev. B, Vol. 70, No. 15, 1550171-1550175, 2004.
    doi:10.1103/PhysRevB.70.155107

    10. Kurokawa, Y., H. Miyazaki, and Y. Jimba, "Light scattering from a monolayer of periodically arrayed dielectric spheres on dielectric substrates," Phys. Rev. B, Vol. 65, No. 20, 2011021-2011024, 2002.
    doi:10.1103/PhysRevB.65.201102

    11. Kurokawa, Y., H. Miyazaki, H. T. Miyazaki, and Y. Jimba, "Effect of a semi-infinite substrate on the internal electric field intensity distribution of a monolayer of periodically arrayed dielectric spheres," J. Phys. Soc. Jpn., Vol. 74, No. 3, 924-929, 2005.
    doi:10.1143/JPSJ.74.924

    12. Miyazaki, H. T., H. Miyazaki, K. Ohtaka, and T. Sato, "Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope," J. Appl. Phys., Vol. 87, No. 10, 7152-7158, 2000.
    doi:10.1063/1.372962

    13. Ohtaka, K., "Scattering theory of low-energy photon diffraction," J. Phys. C, Vol. 13, No. 4, 667-680, 1980.
    doi:10.1088/0022-3719/13/4/022

    14. Ohtaka, K., "Energy band of photons and low-energy photon diffraction," Phys. Rev. B, Vol. 19, No. 10, 5057-5067, 1979.
    doi:10.1103/PhysRevB.19.5057

    15. Ohtaka, K. and M. Inoue, "Light scattering from macroscopic spherical bodies. I. Integrated density of states of transverse electromagnetic fields," Phys. Rev. B, Vol. 25, No. 2, 677-688, 1982.
    doi:10.1103/PhysRevB.25.677

    16. Ohtaka, K., S. Suda, T. Nagano, A. Ueta, T. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, "Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region," Phys. Rev. B, Vol. 61, No. 8, 5267-5279, 2000.
    doi:10.1103/PhysRevB.61.5267

    17. Ohtaka, K. and Y. Tanabe, "Photonic band using vector spherical waves. I. Various properties of bloch electric fields and heavy photons," J. Phys. Soc. Jpn., Vol. 65, No. 7, 2265-2275, 1996.
    doi:10.1143/JPSJ.65.2265

    18. Ohtaka, K. and Y. Tanabe, "Photonic bands using vector spherical waves. II. Reflectivity, coherence and local field," J. Phys. Soc. Jpn., Vol. 65, No. 7, 2276-2284, 1996.
    doi:10.1143/JPSJ.65.2276

    19. Ohtaka, K. and Y. Tanabe, "Photonic bands using vector spherical waves. III. Group-theoretical treatment," J. Phys. Soc. Jpn., Vol. 65, No. 8, 2670-2284, 1996.
    doi:10.1143/JPSJ.65.2670

    20. Sainidou, R., N. Stefanou, I. E. Psarobas, and A. Modinos, "Scattering of elastic waves by a periodic monolayer of spheres," Phys. Rev. B, Vol. 66, No. 2, 243031-243037, 2002.
    doi:10.1103/PhysRevB.66.024303

    21. Yano, S., Y. Segawa, J. S. Bae, K. Mizuno, S. Yamaguchi, and K. Ohtaka, "Optical properties of monolayer lattice and three-dimensional photonic crystals using dielectric spheres," Phys. Rev. B, Vol. 66, No. 7, 751191-751197, 2002.
    doi:10.1103/PhysRevB.66.075119

    22. Andueza, A., R. Echeverria, and J. Sevilla, "Evolution of the electromagnetic modes of a single layer of dielectric spheres with compactness," J. Appl. Phys., Vol. 104, No. 4, 043103, 2008.

    23. Andueza, A. and J. Sevilla, "Non compact single-layers of dielectric spheres electromagnetic behaviour," Opt. Quantum Electron., Vol. 39, No. 4-6, 311-320, 2007.
    doi:10.1007/s11082-007-9091-7

    24. Andueza, A., R. Echeverria, P. Morales, and J. Sevilla, "Geometry influence on the transmission spectra of dielectric single layers of spheres with different compactness," J. Appl. Phys., Vol. 107, No. 12, 124902, 2010.

    25. Andueza, A., T. Smet, P. Morales, and J. Sevilla, "Disorder effect in the transmission spectra of a noncompact single layer of dielectric spheres derived from microwave spectroscopy," Appl. Opt., Vol. 50, No. 31, 91-97, 2011.
    doi:10.1364/AO.50.000G91

    26. Andueza, A., P. Morales, and J. Sevilla, "Photonic band effect in single-layers of high refractive index spheres of different compactness," J. Appl. Phys., Vol. 111, No. 10, 104902, 2012.

    27. Handapangoda, C. C., M. Premaratne, and P. N. Pathirana, "Plane wave scattering by a spherical dielectric particle in motion: A relativistic extension of the Mie theory," Progress In Electromagnetics Research, Vol. 112, 349-379, 2011.

    28. Lidorikis, E., M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, "Tight-binding parametrization for photonic band gap materials," Phys. Rev. Lett., Vol. 81, No. 7, 1405-1408, 1998.
    doi:10.1103/PhysRevLett.81.1405

    29. Shalin, A. S., "Optical antireflection of a medium by nanostructural layers," Progress In Electromagnetics Research B, Vol. 31, 45-66, 2011.

    30. Mie, G., "Die optischen eigenschaften kolloider goldlsungen," Zeitschrift fur Chemie und Industrie der Kolloide, Vol. 2, No. 5, 129-133, 1907.
    doi:10.1007/BF01503334

    31. Bohrem, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particules, Wiley, New York, 1995.