submit Submit login
Vol. 14
Latest Volume
All Volumes
PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-09-07
Time-Domain Inverse Scattering of a Two-Dimensional Metallic Cylinder in Slab Medium Using Asynchronous Particle Swarm Optimization
By
Progress In Electromagnetics Research M, Vol. 14, 85-100, 2010
Abstract
This paper presents asynchronous particle swarm optimization (APSO) applied to the time-domain inverse scattering problems of two-dimensional metallic cylinder buried in slab medium. For this study the finite-difference time-domain (FDTD) is employed for the analysis of the forward scattering part, while for the APSO is applied for the reconstruction of the two-dimensional metallic cylinder buried in slab medium, which includes of the location and shape the metallic cylinder. For the forward scattering, conceptually several electromagnetic pulses are launched to illuminate the unknown scatterers, and then the scattered electromagnetic fields around are measured. In order to efficiently describe the details of the cylinder shape, sub-gridding technique is implemented in the finite difference time domain method. Then, the measured EM fields are used for inverse scattering, in which APSO is employed to transform the inverse scattering problem into optimization problem. By comparing the measured scattered fields and the calculated scattered fields, the shape and location of the metallic cylinder are reconstructed. In addition, the effects of Gaussian noises on imaging reconstruction are also investigated.
Citation
Chi-Hsien Sun, Chien-Ching Chiu, and Ching-Lieh Li, "Time-Domain Inverse Scattering of a Two-Dimensional Metallic Cylinder in Slab Medium Using Asynchronous Particle Swarm Optimization," Progress In Electromagnetics Research M, Vol. 14, 85-100, 2010.
doi:10.2528/PIERM10051101
References

1. Colton, D. and L. Paivarinta, "The uniqueness of a solution to an inverse scattering problem for electromagnetic waves," Archive for Rational Mechanics and Analysis, Vol. 119, No. 1, 59-70, Mar. 1992.
doi:10.1007/BF00376010

2. Tikhonov, A. N. and V. Y. Arsenin, Solutions of Ill-posed Problems, 1977.

3. Ping, X. W. and T. J. Cui, "The factorized sparse approximate inverse preconditioned conjugate gradient algorithm for finite element analysis of scattering problems," Progress In Electromagnetics Research, Vol. 98, 15-31, 2009.
doi:10.2528/PIER09071703

4. Bindu, G., A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Dielectric studies of corn syrup for applications in microwave breast imaging," Progress In Electromagnetics Research, Vol. 59, 175-186, 2006.
doi:10.2528/PIER05072801

5. Chien, W., "Inverse scattering of an un-uniform conductivity scatterer buried in a three-layer structure," Progress In Electromagnetics Research, Vol. 82, 1-18, 2008.
doi:10.2528/PIER08012902

6. Bermani, E., S. Caorsi, and M. Raffetto, "Geometric and dielectric characterization of buried cylinders by using simple time-domain electromagnetic data and neural networks," Microwave and Optical Technology Letters, Vol. 24, No. 1, 24-31, Jan. 2000.
doi:10.1002/(SICI)1098-2760(20000105)24:1<24::AID-MOP9>3.0.CO;2-U

7. Moghaddam, M. and W. C. Chew, "Study of some practical issues in inversion with the born iterative method using time-domain data," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 2, 177-184, Feb. 1993.
doi:10.1109/8.214608

8. Abenius, E. and B. Strand, "Solving inverse electromagnetic problems using FDTD and gradient-based minimization," International Journal for Numerical Methods in Engineering, Vol. 68, No. 6, 650-673, Nov. 2006.
doi:10.1002/nme.1731

9. Rekanos, I. T., "Time-domain inverse scattering using lagrange multipliers: An iterative FDTD-based optimization technique," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 271-289, 2003.
doi:10.1163/156939303322235824

10. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-D buried objects using parallel genetic algorithm combined with FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264

11. Huang, C. H., C. C. Chiu, C. L. Li, and K. C. Chen, "Time domain inverse scattering of a two-dimensional homogenous dielectric object with arbitrary shape by particle swarm optimization," Progress In Electromagnetic Research, Vol. 82, 381-400, 2008.
doi:10.2528/PIER08031904

12. Carlisle, A. and G. Dozier, "An off-the-shelf PSO," Proceedings of the 2001 Workshop on Particle Swarm Optimization, Vol. 1, No. 6, 2001.

13. Semnani, A. and M. Kamyab, "An enhanced hybrid method for solving inverse scattering problems," IEEE Transactions on Magnetics, Vol. 45, 1534-1537, Mar. 2009.
doi:10.1109/TMAG.2009.2012735

14. Zhong, X. M., C. Liao, and W. Chen, "Image reconstruction of arbitrary cross section conducting cylinder using UWB pulse," Journal of Electromagnetic Waves Application, Vol. 21, No. 1, 25-34, 2007.
doi:10.1163/156939307779391786

15. Huang, T. and A. S. Mohan, "A hybrid boundary condition for robust particle swarm optimization," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 112-117, 2005.
doi:10.1109/LAWP.2005.846166

16. Chen, X. and K. Huang, "Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method," Progress In Electromagnetics Research, Vol. 53, 283-298, 2005.
doi:10.2528/PIER04102902

17. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, 2000.

18. Chevalier, M. W., R. J. Luebbers, and V. P. Cable, "FDTD local grid with materical traverse," IEEE Trans. Antennas and Propagation, Vol. 45, No. 3, Mar. 1997.
doi:10.1109/8.558656

19. De Boor, C., A Practical Guide to Splines, Springer-Verlag, 1978.
doi:10.1007/978-1-4612-6333-3

20. Li, C. L., C.-W. Liu, and S.-H. Chen, "Optimization of a PML absorber's conductivity profile using FDTD," Microwave and Optical Technology Lett., Vol. 37, 380-383.
doi:2003

21. Clerc, M., "The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization," Proceedings of Congress on Evolutionary Computation, 1951-1957, Washington, DC, 1999.