Vol. 12

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-04-29

Analysis of Self-Collimation Based Cavity Resonator Formed by Photonic Crystal

By Natesan Yogesh and Venkatachalam Subramanian
Progress In Electromagnetics Research M, Vol. 12, 115-130, 2010
doi:10.2528/PIERM10012604

Abstract

The self-collimation effect in photonic crystal is used for the realization of open cavity resonator formed by photonic prisms in a four-port arrangement. The confinement, field enhancement and energy storage capabilities of the proposed cavity are explored in this paper. The effect of dielectric losses included in the system and role of the position of line source in the confinement effect of the cavity are brought out. Decay of short Gaussian pulse placed inside the cavity is analyzed through finite-difference time-domain studies. Due to the high confinement and divergence less beam propagation, utility of the proposed cavity for rotational gyroscope application is also revealed.

Citation


Natesan Yogesh and Venkatachalam Subramanian, "Analysis of Self-Collimation Based Cavity Resonator Formed by Photonic Crystal," Progress In Electromagnetics Research M, Vol. 12, 115-130, 2010.
doi:10.2528/PIERM10012604
http://jpier.org/PIERM/pier.php?paper=10012604

References


    1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 20, 2059-2062, 1987.
    doi:10.1103/PhysRevLett.58.2059

    2. Kosaka, H., T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett., Vol. 74, No. 9, 1212-1214, 1999.
    doi:10.1063/1.123502

    3. Luo, C., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B, Vol. 65, 201104(R), 2002.
    doi:10.1103/PhysRevB.65.195115

    4. Yu, X. and S. Fan, "Bends and splitters for self-collimated beams in photonic crystals," Appl. Phys. Lett., Vol. 83, No. 16, 3251-3253, 2003.
    doi:10.1063/1.1621736

    5. Zabelin, V., L. A. Dunbar, N. L. Thomas, R. Houdre, M. V. Kotlyar, L. O'Faolain, and T. F. Krauss, "Self-collimating photonic crystal polarization beam splitter," Opt. Lett., Vol. 32, No. 5, 530-532, 2007.
    doi:10.1364/OL.32.000530

    6. Luo, C., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B, Vol. 68, 045115, 2003.
    doi:10.1103/PhysRevB.68.045115

    7. Ruan, Z. and S. He, "Open cavity formed by a photonic crystal with negative effective index of refraction," Opt. Lett., Vol. 30, No. 17, 2308-2310, 2005.
    doi:10.1364/OL.30.002308

    8. Ramakrishna, S. A., S. Guenneau, S. Enoch, G. Tayeb, and B. Gralak, "Confining light with negative refraction in checkerboard metamaterials and photonic crystals," Phys. Rev. A, Vol. 75, 063830, 2007.
    doi:10.1103/PhysRevA.75.063830

    9. Tanaka, Y., J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nature Mater., Vol. 6, 862-865, 2007.
    doi:10.1038/nmat1994

    10. Shen, X.-P., H. Kui, Y. Fang, H.-P. Li, Z.-Y.Wang, and Q. Zhong, "New configuration of ring resonator in photonic crystal based on self-collimation," Chinese Physics Letters, Vol. 25, No. 12, 4288-4291, 2008.
    doi:10.1088/0256-307X/25/12/029

    11. Whiteman, J. R., The Mathematics of Finite Elements and Applications, John Wiley and Sons, Chichester, 1998. http://www.comsol.com.

    12. Taflove, A. and S. C. Hagness, Computational Electrodynamics --- The Finite-difference Time-domain Method, Artech House, Boston, 2000.

    13. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a plane wave basis," Opt. Express, Vol. 8, No. 3, 173-190, 2001. http://abinitio.mit.edu/mpb.
    doi:10.1364/OE.8.000173

    14. Foteinopoulou, S. and C. M. Soukoulis, "Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects," Phys. Rev. B, Vol. 72, 165112, 2005.
    doi:10.1103/PhysRevB.72.165112

    15. Nagesh, E. D. V., N. Yogesh, and V. Subramanian, "Application of defect induced microwave band gap structure for non-destructive evaluation and the construction of a frequency selector switch," PIERS Online, Vol. 4, No. 6, 631-634, 2008.
    doi:10.2529/PIERS071220053416

    16. Oskooi, A. F., D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Comp. Phys. Commun., Vol. 181, 687-702, 2010.
    doi:10.1016/j.cpc.2009.11.008

    17. Post, E. J., "Sagnac effect," Rev. Mod. Phys., Vol. 39, No. 2, 475-493, 1967.
    doi:10.1103/RevModPhys.39.475

    18. Sunada, S. and T. Harayama, "Sagnac effect in resonant microcavities," Phys. Rev. A, Vol. 74, 021801(R), 2006.
    doi:10.1103/PhysRevA.74.021801

    19. Steinberg, B. Z. and A. Boag, "Splitting of microcavity degenerate modes in rotating photonic crystals-the miniature optical gyroscopes ," J. Opt. Soc. Am. B, Vol. 24, No. 1, 142-151, 2007.
    doi:10.1364/JOSAB.24.000142