Vol. 107
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-10-25
A Low-Profile and Low-Cost Dual Circularly Polarized Patch Antenna
By
Progress In Electromagnetics Research Letters, Vol. 107, 67-74, 2022
Abstract
This paper presents a low profile and low-cost patch antenna with dual circularly polarized (CP) capability in X-band at a canter frequency of 8.3 GHz. The dual-CP antenna is divided into three layers, composed of a parasitic square patch, radiation square patch with four equal arms, and 90˚ patch coupler. Two arms of the radiation patch are connected to the 90˚ hybrid coupler using two metalized vias. right-handed circular polarization (RHCP) and Left-handed circular polarization (LHCP) is achieved by exciting two different ports. To validate the proposed design, the prototype of dual-CP antenna is fabricated and measured. Based on the measurement, the structure of proposed antenna has an excellent circular-polarization purity of less than 3-dB over the whole operational frequency bandwidth of the antenna (8 GHz-8.47 GHz) with a wide 3-dB axial ratio (AR) beamwidth of 133˚ across the angular range from -55° to +78° at 8.3 GHz.
Citation
Zahra Mousavirazi, Hassan Naseri, Mohamed Mamdouh M. Ali, Pejman Rezaei, and Tayeb Denidni, "A Low-Profile and Low-Cost Dual Circularly Polarized Patch Antenna," Progress In Electromagnetics Research Letters, Vol. 107, 67-74, 2022.
doi:10.2528/PIERL22070603
References

1. Yang, Y., B. Sun, and J. Guo, "A low-cost, single-layer, dual circularly polarized," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 4, 651-655, 2019.
doi:10.1109/LAWP.2019.2900301

2. Li, H. D., X. Y. Du, J. Y. Yin, J. Ren, and Y. Yin, "Differentially fed dual-circularly polarized antenna with slow wave delay lines," IEEE Trans. Antennas Propag., Vol. 68, No. 5, 4066-4071, 2020.
doi:10.1109/TAP.2019.2949706

3. Mousavi, Z., P. Rezaei, and V. Rafii, "Single layer CPSSA array with change polarization diversity in broadband application," Int. J. RF Microwave Computer-Aided Eng., Vol. 27, No. 4, e21075, 2017.
doi:10.1002/mmce.21075

4. Wu, Z., M. C. Tang, T. Shi, and R. W. Ziolkowski, "Two-port, dual-circularly polarized, low-profile broadside-radiating electrically small huygens dipole antenna," IEEE Trans. Antennas Propag., Vol. 69, No. 1, 514-519, 2021.
doi:10.1109/TAP.2020.2999747

5. Sun, M., Z. Zhang, K. An, X. Wang, Y. Jiang, and A. Chen, "Dual-sense circular polarization antenna based on reconfigurable orthogonal network," Int. J. Antennas Propag., Vol. 2019, Article ID 1670786, 2019.

6. Sharma, P. and K. Gupta, "Analysis and optimized design of single feed circularly polarized microstrip antennas," IEEE Trans. Antennas Propag., Vol. 31, No. 6, 949-955, 1983.
doi:10.1109/TAP.1983.1143162

7. Adrian, A. and D. H. Schaubert, "Dual aperture-coupled microstrip antenna for dual or circular polarisation," Electron. Lett., Vol. 23, No. 23, 1226-1228, 1987.
doi:10.1049/el:19870854

8. Mousavi, Z. and P. Rezaei, "Millimetre-wave beam-steering array antenna by emphasising on improvement of Butler matrix features," IET Microwaves, Antennas & Propagation, Vol. 13, No. 9, 1287-1292, 2019.
doi:10.1049/iet-map.2018.5340

9. Caso, R., A. Buffi, M. R. Pino, P. Nepa, and G. Manara, "An annular-slot coupling feeding technique for dual-feed circularly polarized patch arrays," 2010 IEEE Antennas and Propagation Society International Symposium, 1-4, Toronto, 2010.

10. Ali, M. M. M. and A. Sebak, "Printed RGW circularly polarized differential feeding antenna array for 5G communications," IEEE Trans. Antennas Propag., Vol. 67, No. 5, 3151-3160, 2019.
doi:10.1109/TAP.2019.2900411

11. Ding, K., C. Gao, T. Yu, D. Qu, and B. Zhang, "Gain-improved broadband circularly polarized antenna array with parasitic patches," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 1468-1471, 2017.
doi:10.1109/LAWP.2016.2646400

12. Xu, H., J. Zhou, K. Zhou, Q. Wu, Z. Yu, and W. Hong, "Planar wideband circularly polarized cavity-backed stacked patch antenna array for millimeter-wave applications," IEEE Trans. Antennas Propag., Vol. 66, No. 10, 5170-5179, 2018.
doi:10.1109/TAP.2018.2862345

13. Midya, M., S. Bhattacharjee, S. C. Bakshi, and M. Mitra, "CPW-fed dual-band dual-sence circularly polarized square slot antenna," 2018 IEEE Indian Conf. Antennas Propagation, 4-6, 2018.

14. Mousavi, Z., P. Rezaei, M. B. Kakhki, and T. A. Denidni, "Beam-steering antenna array based on a butler matrix feed network with CP capability for satellite application," Journal of Instrumentation, Vol. 14, P07005-1-P07005-9, 2019.

15. Narbudowicz, A., X. Bao, and M. J. Ammann, "Dual circularly-polarized patch antenna using even and odd feed-line modes," IEEE Trans. Antennas Propag., Vol. 61, No. 9, 4828-4831, 2013.
doi:10.1109/TAP.2013.2269471

16. Mousavi, Z. and P. Rezaei, "A two-layer beam-steering array antenna with 4 × 4 modified Butler matrix fed network for switched beam application," Int. J. RF Microwave Computer-Aided Eng., Vol. 30, No. 2, e22028, 2020.

17. Wang, A., X. Li, X. J. Yi, L. Yang, J. Zhao, and A. Li, "Dual circularly polarised omnidirectional antenna," IET Microw. Antennas Propag., Vol. 13, No. 6, 870-873, 2019.
doi:10.1049/iet-map.2018.5933

18. Moubadir, M., I. Badaoui, N. A. Touhami, M. Aghoutane, and M. El Ouahabi, "A new circular polarization dual feed microstrip square patch antenna using branch coupler feeds for WLAN/HIPERLAN applications," Procedia Manuf., Vol. 32, 702-709, 2019.
doi:10.1016/j.promfg.2019.02.274

19. Parchin, N. O., H. J. Basherlou, and R. A. Abd-Alhameed, "Dual circularly polarized crescent-shaped slot antenna for 5G front-end systems," Progress In Electromagnetics Research Letters, Vol. 91, 41-48, 2020.
doi:10.2528/PIERL20040107

20. Fakharian, M., P. Rezaei, and A. Orouji, "Reconfigurable multiband extended U-slot antenna with switchable polarization for wireless applications," IEEE Antennas Propag. Mag., Vol. 57, No. 2, 194-202, 2015, doi: 10.1109/MAP.2015.2414665.
doi:10.1109/MAP.2015.2414665

21. Mousavirazi, Z., V. Rafiei, and T. A. Denidni, "Beam-switching antenna array with dual-circular-polarized operation for WiMAX applications," AEU --- Int. J. Electron. C., Vol. 137, 153796, 2021, doi: https://doi.org/10.1016/j.aeue.2021.153796.
doi:10.1016/j.aeue.2021.153796

22. Chu, Q., M. Ye, and X. Li, "A low-profile omnidirectional circularly polarized antenna using planar sector-shaped endfire elements," IEEE Trans. Antennas Propag., Vol. 65, No. 5, 2240-2247, 2017.
doi:10.1109/TAP.2017.2679481

23. Liu, N.-W., L. Zhu, and W.-W. Choi, "Low-profile wide-beamwidth circularly-polarised patch antenna on a suspended substrate," IET Microw. Antennas Propag., Vol. 10, No. 8, 885-890, May 2016.
doi:10.1049/iet-map.2016.0081

24. Zhang, X., L. Zhu, N. W. Liu, and D. P. Xie, "Pin-loaded circularlypolarised patch antenna with sharpened gain roll-off rate and widened 3-dB axial ratio beamwidth," IET Microw. Antennas Propag., Vol. 12, No. 8, 1247-1254, Mar. 2018.
doi:10.1049/iet-map.2017.0970