Vol. 102
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-01-25
Compact Dual-Band Bandpass Filter with High Selectivity Using Stub-Loaded Stepped-Impedance Resonators
By
Progress In Electromagnetics Research Letters, Vol. 102, 101-107, 2022
Abstract
A novel compact dual-band bandpass filter with wide stopband using stub-loaded stepped-impedance resonators is presented in this paper. The characteristics of the dual-mode resonator are investigated by using even/odd mode analysis. The center frequencies and bandwidths of the two passbands can be controlled by adjusting the geometric dimensions of the stub-loaded stepped-impedance resonators. Moreover, the filter has been implemented with five transmission zeros to improve the selectivity. A prototype of a dual-band bandpass filter centered at 3 and 4.35 GHz has been designed and fabricated. The measured bandwidths are 8.3 and 4.6%, and the corresponding insertion losses are 1.7 and 1.6 dB, respectively. A compact dual-band bandpass filter with sharp roll-off rate of 113.3/56.7/56.7/170 dB/GHz, wide stopband of 5.3 GHz, and isolation between two passbands of 25 dB is achieved. The measured results are in good agreement with the simulated ones.
Citation
Zhonghua Zhang, Ming Xia, and Guanglin Li, "Compact Dual-Band Bandpass Filter with High Selectivity Using Stub-Loaded Stepped-Impedance Resonators," Progress In Electromagnetics Research Letters, Vol. 102, 101-107, 2022.
doi:10.2528/PIERL21112501
References

1. Hong, J. S. and M. J. Lancaster, "Microstrip Filters for RF/Microwave Applications," Wiley, 2001.

2. Tsai, L. C. and C. W. Huse, "Dual-band bandpass filters using equal-length coupled-serial-shunted lines and Z-transform techniques," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 4, 1111-1117, 2004.
doi:10.1109/TMTT.2004.825680

3. Chen, F. C., Q. X. Chu, Z. H. Li, and X. H. Wu, "Compact dual-band bandpass filter with controllable bandwidths using stub-loaded multiple-mode resonator," IET Proc. Microw., Antennas Propag., Vol. 6, No. 10, 1172-1178, 2012.
doi:10.1049/iet-map.2011.0523

4. Lin, K. C., C. F. Chang, M. C.Wu, and S. J. Chung, "Dual-bandpass filters with serial configuration using LTCC technology," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 6, 2321-2328, 2006.
doi:10.1109/TMTT.2006.875267

5. Lee, J. and Y. Lim, "Compact dual-band bandpass filter with good frequency selectivity," Electron. Lett., Vol. 47, No. 25, 1376-1377, 2011.
doi:10.1049/el.2011.2702

6. Wei, X. B., Y. Shi, and P. Wang, "Compact dual-band bandpass filter with improved stopband characteristics," Electron. Lett., Vol. 48, No. 12, 704-705, 2012.
doi:10.1049/el.2012.1107

7. Zhang, X. Y. and Q. Xue, "Novel dual-mode dual-band bandpass filters using coplanar waveguide fed ring resonators," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 10, 2183-2190, 2007.
doi:10.1109/TMTT.2007.906501

8. Chen, C. H. and C. H. Huang, "Highly miniaturized multi-band bandpass filter design based on a stacked spiral resonator structure," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 5, 1278-1286, 2012.
doi:10.1109/TMTT.2012.2187797

9. Chang, W. S. and C. Y. Chang, "Analytical design of microstrip short-circuit terminated stepped-impedance resonator dual-band filter," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 7, 1730-1739, 2011.
doi:10.1109/TMTT.2011.2132140

10. Singh, V., V. K. Killamsetty, and B. Mukherjee, "Compact dual-band BPF with wide stopband using stub-loaded spiral stepped-impedance resonator," Electron. Lett., Vol. 52, No. 22, 1860-1862, 2013.
doi:10.1049/el.2016.2838

11. Chu, Q. X. and H. Wang, "A compact open-loop filter mixed electric and magnetic coupling," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 2, 431-439, 2008.
doi:10.1109/TMTT.2007.914642

12. Zhang, X. Y., J. X. Chen, Q. Xue, and S. M. Li, "Dual-band filter using stub-loaded resonators," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 8, 583-585, 2007.
doi:10.1109/LMWC.2007.901768

13. Tsai, C. M., S. Y. Lee, and C. C. Tsai, "Performance of a planar filter using a 0 feed structure," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 10, 2362-2367, 2002.
doi:10.1109/TMTT.2002.803421

14. Chen, C. F., T. Y. Huang, and R. B. Wu, "Design of dual- and triple-passband filters using alternately cascaded multiband resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 9, 3550-3558, 2006.
doi:10.1109/TMTT.2006.880653

15. Amari, S., "Direct synthesis of folded symmetric resonator filters with source-load coupling," IEEE Microw. Wireless Compon. Lett., Vol. 11, No. 6, 264-266, 2001.
doi:10.1109/7260.928933

16. Sun, S. J., L. Lin, B. Wu, K. Deng, and C.-H. Liang, "A novel quad-mode resonator and its application to dual-band bandpass filters," Progress In Electromagnetics Research Letters, Vol. 43, 95-104, 2013.

17. Fu, W., Z. M. Li, P. Z. Liu, J. W. Cheng, and X. Qiu, "Modeling and analysis of novel CSRRs-loaded dual-band bandpass SIW filters," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 68, No. 7, 2352-2356, 2021.
doi:10.1109/TCSII.2021.3052574

18. Lahmissi, A. and M. Challal, "Design and analysis of a compact dual-band bandpass lter using V- and W-shaped microstrip open lines," Microw. Opt. Technol. Lett., Vol. 61, 920-925, 2019.
doi:10.1002/mop.31653

19. Liu, H. W., P. Wen, Y. L. Zhao, B. P. Ren, X. M. Wang, and X. H. Guan, "Dual-band superconducting bandpass filter using quadruple-mode resonator," IEEE Trans. Appl. Supercond., Vol. 24, No. 2, 1-4, 2014.
doi:10.1109/TASC.2014.2312755

20. Xu, J., K. D. Xu, M. Zhang, and Q. Chen, "Dual-band bandpass filter using two simple coupled microstrip rings," Engineering Reports, Vol. 3, e12288, 2021.
doi:10.1002/eng2.12288