Vol. 98
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-06-21
Design of Low-Profile and Safe Low SAR Tri-Band Textile EBG-Based Antenna for IoT Applications
By
Progress In Electromagnetics Research Letters, Vol. 98, 85-94, 2021
Abstract
A coplanar tri-band wearable antenna combined with an electromagnetic bandgap (EBG) structure is described for sub-6 GHz 5G and wireless local area network (WLAN) applications. The proposed antenna is fully implemented in textile materials thus offering a robust, compact, and discreet solution to meet the requirements of wearable applications. The addition of the EBG structure increases the textile antenna performance in terms of radiation patterns in the presence of the human body. The experimental results show that the proposed design exhibits tolerance to various bending conditions as well as loading by body tissues. In addition, to ensure the safety of the design for human health, the values of the specific absorption rate (SAR) have been reduced by more than 95%, which complies with the international standard. This design could thus be considered as a good candidate for IoT applications compared to the current state of the art while having a tri-band behavior and smaller volume.
Citation
Wissem El May, Imen Sfar, Jean Marc Ribero, and Lotfi Osman, "Design of Low-Profile and Safe Low SAR Tri-Band Textile EBG-Based Antenna for IoT Applications," Progress In Electromagnetics Research Letters, Vol. 98, 85-94, 2021.
doi:10.2528/PIERL21051107
References

1. Hertleer, C., H. Rogier, L. Vallozzi, and L. van Langenhove, "A textile antenna for off-body communication integrated into protective clothing for fire fighters," IEEE Trans. Antennas Propag., Vol. 57, 919-925, 2009.
doi:10.1109/TAP.2009.2014574

2. Song, Y., D. Le Goff, G. Riondet, and K. Mouthaa, "Polymer-based 4.2 GHz patch antenna," Proceedings of the 2020 International Workshop on Antenna Technology, 25-28, Feb. 2020.

3. Ashyap, A. Y. I., et al. "Inverted E-shaped wearable textile antenna for medical applications," IEEE Access, Vol. 6, 35214-35222, 2018.
doi:10.1109/ACCESS.2018.2847280

4. Atanasova, G. L. and N. T. Atanasov, "Impact of electromagnetic properties of textile materials on performance of a low-profile wearable antenna backed by a reflector," International Workshop on Antenna Technology, 1-4, iWAT, 2020.

5. Fang, R., R. Song, X. Zhao, Z. Wang, W. Qian, and D. He, "Compact and low-profile UWB antenna based on graphene-assembled films for wearable applications," Sensors, Vol. 20, 2552, 2020.
doi:10.3390/s20092552

6. Gao, G.-P., C. Yang, B. Hu, R.-F. Zhang, and S.-F. Wang, "A wide bandwidth wearable all-textile PIFA with dual resonance modes for 5 GHz WLAN applications," IEEE Trans. Antennas Propag., Vol. 67, No. 6, 4206-4211, Jun. 2019.
doi:10.1109/TAP.2019.2905976

7. Zhu, S. and R. Langley, "Dual-band wearable textile antenna on an EBG substrate," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 926-935, Apr. 2009.
doi:10.1109/TAP.2009.2014527

8. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Low-profile dual-band textile antenna with artificial magnetic conductor plane," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6487-6490, 2014.
doi:10.1109/TAP.2014.2359194

9. Gao, G. P., B. Hu, S. F. Wang, and C. Yang, "Wearable circular ring slot antenna with EBG structure for wireless bodyarea network," IEEE Antennas and Wireless Propagation Letters, Vol. 17, 434-437, 2018.
doi:10.1109/LAWP.2018.2794061

10. Velan, S. and E. F. Sundarsingh, "Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 249-252, 2015.
doi:10.1109/LAWP.2014.2360710

11. Mantash, M., A. C. Tarot, and K. Mahdjoubi, "Design methodology for wearable antenna on artificial magnetic conductor using stretch conductive fabric," IETJ Mag., Vol. 52, 95-96, 2016.

12. Desai, A., T. Upadhyaya, J. Patel, and R. Patel, "Flexible CPW fed transparent antenna for WLAN and sub-6 GHz 5G applications," Microw. Opt. Technol. Lett., Vol. 62, 2090-2103, 2020.
doi:10.1002/mop.32287

13. Zahedi, A., F. A. Boroumand, and H. Aliakbarian, "Analytical transmission line model for complex dielectric constant measurement of thin substrates using T-resonator method," IET Microw. Antennas Propag., Vol. 14, 2027-2034, 2020.
doi:10.1049/iet-map.2019.1117

14. Foroozesh, A. and L. Shafai, "Investigation into the application of artificial magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 1, 4-20, Jan. 2011.
doi:10.1109/TAP.2010.2090458

15. Li, Y., M. Fan, F. Chen, J. She, and Z. Feng, "A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 183-190, 2005.
doi:10.1109/TMTT.2004.839322

16. EL May. W, I. Sfar, L. Osman, and J. M. Ribero, "A textile EBG-based antenna for future 5G-IoT millimeter-wave applications," Electronics, Vol. 10, Jan. 2021.

17. Liu, X. Y., Y. H. Di, H. Liu, Z. T. Wu, and M. M. Tentzeris, "A planar Windmill-like broadband antenna equipped with artificial magnetic conductor for off-body communications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 64-67, 2016.
doi:10.1109/LAWP.2015.2429683

18. Jamaluddin, M. H., et al. "An overview of electromagnetic band-gap integrated wearable antennas," IEEE Access, Vol. 8, 7641-7658, 2020.

19. Hirata, A., K. Shirai, and O. Fujiwara, "On averaging mass of SAR correlating with temperature elevation due to a dipole antenna," Progress In Electromagnetics Research, Vol. 84, 221-237, 2008.
doi:10.2528/PIER08072704

20. Klemm, M. and G. Troester, "EM energy absorption in the human body tissues due to UWB antennas," Progress In Electromagnetics Research, Vol. 62, 261-280, 2006.
doi:10.2528/PIER06040601