Vol. 91
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-04-22
Dual Band Planar Antenna for GSM and WiMAX Applications with Inclusion of Modified Split Ring Resonator Structure
By
Progress In Electromagnetics Research Letters, Vol. 91, 1-7, 2020
Abstract
This paper presents a dual-band microstrip antenna for Global System for Mobile Communications (GSM) and Worldwide Interoperability for Microwave Access (WiMAX) applications. The split ring resonators structure driven antenna operates at 900 MHz and 3.3 GHz, respectively. Return losses achieved at the two resonance frequencies are 22.26 dB and 18.97 dB, respectively. The proposed antenna is developed on a cost-effective FR-4 substrate with relative permittivity 4.4, tangent loss 0.002, and partial ground plane. The bandwidths of the proposed antenna are 3.01% and 4.26%, respectively. The design and fabrication procedure along with both simulated and measured results are presented and discussed in this paper. Designed antenna delivers good performance and solution for both applications.
Citation
Upeshkumar Patel, and Trushit K. Upadhyaya, "Dual Band Planar Antenna for GSM and WiMAX Applications with Inclusion of Modified Split Ring Resonator Structure," Progress In Electromagnetics Research Letters, Vol. 91, 1-7, 2020.
doi:10.2528/PIERL20031907
References

1. Liu, H., R. Li, Y. Pan, X. Quan, L. Yang, and L. Zheng, "A multi-broadband planar antenna for GSM/UMTS/LTE and WLAN/WiMAX handsets," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2856-2860, 2014.
doi:10.1109/TAP.2014.2308525

2. Hsieh, H. W., Y. C. Lee, K. K. Tiong, and J. S. Sun, "Design of a multiband antenna for mobile handset operations," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 200-203, 2009.
doi:10.1109/LAWP.2008.2011655

3. Sharma, D. and M. S. Hashmi, "A novel design of tri-band patch antenna for GSM/WiFi/WiMAX applications," 2014 IEEE International Microwave and RF Conference (IMaRC), 156-158, December 2014.
doi:10.1109/IMaRC.2014.7038995

4. Chen, G. C. Y., K. M. Chan, and K. Rambabu, "Miniaturized Yagi class of antennas for GSM, WLAN, and WiMax applications," IEEE Transactions on Consumer Electronics, Vol. 56, No. 3, 2010.

5. Patel, U. and T. K. Upadhyaya, "Design and analysis of compact μ-negative material loaded wideband electrically compact antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research, Vol. 79, 11-22, 2019.
doi:10.2528/PIERM18121502

6. Abbasi, M. A. B., M. Rizwan, S. Shahid, S. Rafique, H. T. Awan, and S. M. Abbas, "A compact multiband antenna for GSM and WiMAX applications," International Multi Topic Conference, 20-30, Springer, Berlin, Heidelberg, March 2012.

7. Kommuri, U. K., I. Rajkumar, P. S. Chowdhury, and S. Balaji, "Self-sustained RF Energy Harvesting Antenna design for GSM band applications," Self, Vol. 5, No. 3, 2018.

8. Naik, K. K., "Asymmetric CPW-fed SRR patch antenna for WLAN/WiMAX applications," AEU --- International Journal of Electronics and Communications, 2018.

9. Upadhyaya Trushit, K., K. S. Prasad, J. Rajeev, and P. Merih, "Negative refractive index material-inspired 90-deg electrically tilted ultra wideband resonator," Opt. Eng., Vol. 53, No. 10, 107104, Oct. 7, 2014, http://dx.doi.org/10.1117/1.OE.53.10.10.7104.
doi:10.1117/1.OE.53.10.107104

10. Balanis, C. A., Antenna Theory, Analysis and Design, John Wiley and Sons, New York, 2005.

11. Castillo-Aranibar, P., A. Garcia-Lamperez, and D. Segovia-Vargas, "Omnidirectional compact dual-band antenna based on dual-frequency unequal split ring resonators for WLAN and WiMAX applications," Progress In Electromagnetics Research M, Vol. 67, 157-167, 2018.
doi:10.2528/PIERM17052202

12. Geschke, R. H., B. Jokanovic, and P. Meyer, "Compact triple-band resonators using multiple splitring resonators," 2009 European Microwave Conference (EuMC), 366-369, Sep. 2009.

13. Upadhyaya, T., S. Kosta, R. Jyoti, and M. Palandoken, "Novel stacked μ-negative material-loaded antenna for satellite applications," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 2, 229-235, 2016, doi:10.1017/S175907871400138X.
doi:10.1017/S175907871400138X

14. Han, Z. J., W. Song, and X. Q. Sheng, "Gain enhancement and RCS reduction for patch antenna by using polarization-dependent EBG surface," IEEE Antennas Wireless Propagation Letters, Vol. 16, 1631-1634, 2017.
doi:10.1109/LAWP.2017.2658195

15. Pendry, et al. "Magnetism from conductors and enhanced nonlinear phenomenal," IEEE Transactions on Microwave Theory and Techniques, 2075-2084, Nov. 1999.

16. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of μ and ε," Soviet Phys. Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

17. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions of Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

18. Smith, et al. "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, No. 3, 71-82, 2005.

19. Upadhyaya, T. K., V. V. Dwivedi, S. P. Kosta, and Y. P. Kosta, "Miniaturization of tri band patch antenna using metamaterials," Fourth International Conference on Computational Intelligence and Communication Networks, 45-48, Mathura, 2012, doi: 10.1109/CICN.2012.147.

20. Patel, U. and T. K. Upadhyaya, "Design and analysis of compact μ-negative material loaded wideband electrically compact antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research M, Vol. 79, 11-22, 2019.
doi:10.2528/PIERM18121502