Vol. 90
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-04-27
Compact Balanced Bandpass Filter with High Selectivity Based on Two Coupled Dual-Mode Microstrip Loop Resonators
By
Progress In Electromagnetics Research Letters, Vol. 90, 143-149, 2020
Abstract
This letter proposes a novel single-layer fourth-order balanced bandpass filter based on two coupled dual-mode loop resonators. Two pairs of balanced input/output (IO) feeding lines with unequal arms are employed to excite the outside dual-mode loop resonator, and the inside dual-mode loop resonator with meander lines is coupled to the outside one. Under differential-mode (DM) operation, three finite transmission zeros (FTZs) can be produced and controlled. Under common mode (CM) operation, the rejection level can be controlled by the length of IO feeding arms. For the demonstration, a balanced dual-mode loop filter with the center frequency of 5.2 GHz is designed, fabricated, and measured. The proposed balanced filter has the advantages of compact size, high selectivity, wide stopband of DM response, and good CM suppression.
Citation
Xiao-Bang Ji, and Mi Yang, "Compact Balanced Bandpass Filter with High Selectivity Based on Two Coupled Dual-Mode Microstrip Loop Resonators," Progress In Electromagnetics Research Letters, Vol. 90, 143-149, 2020.
doi:10.2528/PIERL20011704
References

1. Wu, C., C. Wang, and C. H. Chen, "Balanced coupled-resonator bandpass filters using multisection resonators for common-mode suppression and stopband extension," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 8, 1756-1763, Aug. 2007.
doi:10.1109/TMTT.2007.901609

2. Wu, C., C. Wang, and C. H. Chen, "Novel balanced coupled-line bandpass filters with common-mode noise suppression," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 2, 287-295, Feb. 2007.
doi:10.1109/TMTT.2006.889147

3. Wu, C., C. Wang, and C. H. Chen, "Stopband-extended balanced bandpass filter using coupled stepped-impedance resonators," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 7, 507-509, Jul. 2007.
doi:10.1109/LMWC.2007.899311

4. Yan, T., D. Lu, J. Wang, and X. Tang, "High-selectivity balanced bandpass filter with mixed electric and magnetic coupling," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 6, 398-400, Jun. 2016.
doi:10.1109/LMWC.2016.2562110

5. Feng, W. and W. Che, "Novel wideband differential bandpass filters based on T-shaped structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 6, 1560-1568, Jun. 2012.
doi:10.1109/TMTT.2012.2188538

6. Shi, J. and Q. Xue, "Balanced bandpass filters using center-loaded half-wavelength resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 4, 970-977, Apr. 2010.
doi:10.1109/TMTT.2010.2042839

7. Gu, H., L. Ge, and L. Xu, "Simple dual-mode balanced bandpass filter with high selectivity and extended common-mode noise suppression," Electronics Letters, Vol. 54, No. 13, 833-835, Jun. 28, 2018.
doi:10.1049/el.2018.1246

8. Guo, X., L. Zhu, and W. Wu, "A new concept of partial electric/magnetic walls for application in design of balanced bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 4, 1308-1315, 2019.
doi:10.1109/TMTT.2019.2892751

9. Qiu, L. and Q. Chu, "Balanced bandpass filter using stub-loaded ring resonator and loaded coupled feed-line," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 10, 654-656, 2015.
doi:10.1109/LMWC.2015.2463228

10. Feng, W., W. Che, and Q. Xue, "Balanced filters with wideband common mode suppression using dual-mode ring resonators," IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 62, No. 6, 1499-1507, 2015.
doi:10.1109/TCSI.2015.2423752

11. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, New York, 2001.
doi:10.1002/0471221619