Vol. 88
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-12-11
A New Compact UWB Bandpass Filter with Quad Notched Characteristics
By
Progress In Electromagnetics Research Letters, Vol. 88, 83-88, 2020
Abstract
A new approach to design a microstrip ultra-wideband (UWB) bandpass filter (BPF) with quad sharply notched bands and good selectivity is proposed using quad parallel defected microstrip structures (PDMSs). The initial UWB BPF comprises interdigital coupled lines and an E-shaped multiple-mode resonator (EMMR) to achieve two transmission zeros on both sides of the passband thus to improve skirt selectivity. Then, four PDMSs are introduced, which have the properties of achieving four band-notched characteristics and provide high degree of adjusting freedom. To validate the design theory, a new microstrip UWB BPF with four notched bands respectively centered at 5.3, 5.9, 6.4, and 7.4 GHz is designed and fabricated. Both simulation and experimental results are provided with good agreement. The designed methodology is very efficient and useful for filter synthesis though the design principle is simple.
Citation
Fengjing Liu, and Mao Qun, "A New Compact UWB Bandpass Filter with Quad Notched Characteristics," Progress In Electromagnetics Research Letters, Vol. 88, 83-88, 2020.
doi:10.2528/PIERL19090505
References

1. Zhu, L., S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microw. Wirel. Compon. Lett., Vol. 15, No. 11, 796-798, 2005.
doi:10.1109/LMWC.2005.859011

2. Assaf, M., A. Malki, and A. A. Sarhan, "Synthesis and design of MMR-based ultrawideband (UWB) band pass filter (BPF) in suspended stripline (SSL) technology," Progress In Electromagnetics Research Letters, Vol. 84, 123-130, 2019.
doi:10.2528/PIERL19031602

3. Comez-Garcia, R. and J. I. Alonso, "Systematic method for the exact synthesis of ultra-wideband filtering responses using high-pass and low-pass sections," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 10, 3751-3764, 2006.
doi:10.1109/TMTT.2006.882883

4. Liu, B. W., Y. Z. Yin, Y. Yang, S. H. Jing, and A. F. Sun, "Compact UWB bandpass filter with two notched bands based on electromagnetic bandgap structures," Electron. Lett., Vol. 47, No. 13, 757-758, 2011.
doi:10.1049/el.2011.1281

5. Mokhtarani, A. and A. Ahmadi, "A compact UWB band pass filter using simple defected ground structures," Progress In Electromagnetics Research Letters, Vol. 79, 17-24, 2018.
doi:10.2528/PIERL17112001

6. Shaman, H. and J. S. Hong, "Asymmetric parallel-coupled lines for notch implementation in UWB filter," IEEE Microw. Wirel. Compon. Lett., Vol. 17, No. 7, 516-518, 2007.
doi:10.1109/LMWC.2007.899314

7. Song, K. and Q. Xue, "Compact ultra-wideband (UWB) bandpass filters with multiple notched bands," IEEE Microw. Wirel. Compon. Lett., Vol. 20, No. 8, 447-449, 2010.
doi:10.1109/LMWC.2010.2050303

8. Wei, F., Q. Y. Wu, X. W. Shi, and L. Chen, "Compact UWB BPF with triple-notched bands based on stub loaded resonator," Electron. Lett., Vol. 49, No. 2, 124-126, 2013.
doi:10.1049/el.2012.2885

9. Tang, C. and N. Yang, "Design of compact microstrip UWB bandpass filter with triple-notched bands," Progress In Electromagnetics Research Letters, Vol. 58, 9-16, 2016.
doi:10.2528/PIERL15072904

10. Wang, J., J. Zhao, and J. L. Li, "Compact UWB bandpass filter with triple notched bands using parallel U-shaped defected microstrip structure," Electronics Letters, Vol. 50, No. 2, 89-91, 2014.
doi:10.1049/el.2013.3077