Vol. 81
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-01-09
Design of Continuous Polyharmonic-Tuned Power Ampli Er with Optimal Knee Voltage Parameter
By
Progress In Electromagnetics Research Letters, Vol. 81, 51-58, 2019
Abstract
This paper presents the design of a continuous polyharmonic-tuned mode (CPHTM) power amplifier (PA) with an introduced optimal knee voltage waveform control parameter in a continuous harmonic-tuned voltage waveform equation. The optimal knee voltage waveform control parameter works in unison with derived equations, providing bandwidth and efficiency potentials over the limiting factors of the conventional harmonic-tuned power amplifiers (PAs). The effectiveness of the design strategy is proven by the realisation of a CPHTM type-I (CPHTMT-I) PA as compared with a non-continuous polyharmonic-tuned mode type-II (NCPHTMT-II) PA. Test results with continuous-wave (CW) signals show drain efficiency (DE) levels within 53.6%-79% (1.31-2.39 GHz) with 58.4% fractional bandwidth for CPHTMT-I and 64%-78% (1.65-1.95 GHz) with 16.7% fractional bandwidth for NCPHTMT-II. The CW result evidently shows the validation and efficacy of the proposed theory.
Citation
Gideon Naah, Songbai He, and Weimin Shi, "Design of Continuous Polyharmonic-Tuned Power Ampli Er with Optimal Knee Voltage Parameter," Progress In Electromagnetics Research Letters, Vol. 81, 51-58, 2019.
doi:10.2528/PIERL18092803
References

1. Zhou, X. Y., S. Y. Lee, W. S. Chan, S. Chen, and D. Ho, "Broadband efficiency-enhanced mutually coupled harmonic postmatching Doherty power amplifier," IEEE Trans. Circuits Syst. I, Regular Papers, Vol. 64, No. 7, 1758-1771, Jul. 2017.
doi:10.1109/TCSI.2017.2658689

2. Kim, J. H., S. J. Lee, B. H. Park, S. H. Jang, J. H. Jung, and C. S. Park, "Analysis of high-efficiency power amplifier using second harmonic manipulation: inverse class-F/J amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 8, 2024-2036, Aug. 2011.
doi:10.1109/TMTT.2011.2157354

3. Stameroff, A. N., H. H. Ta, A. Pham, R. E. Leoni, and III, "Wide-bandwidth power-combining and inverse class-F GaN power amplifier at X-band," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 3, 1291-1300, Mar. 2013.
doi:10.1109/TMTT.2013.2244611

4. Negra, R., A. Sadeve, S. Bensmida, and F. M. Ghannouchi, "Concurrent dual-band class-F load coupling network for applications at 1.7 and 2.14 GHz," IEEE Trans. Circuits and Syst. II, Express Briefs, Vol. 55, No. 3, 259-263, Mar. 2008.
doi:10.1109/TCSII.2008.918993

5. Colantonio, P., F. Giannini, R. Giofre, and L. Piazzon, "A design technique for concurrent dualband harmonic tuned power amplifier," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 11, 2545-2555, Nov. 2008.
doi:10.1109/TMTT.2008.2004897

6. Chen, J., S. He, F. You, R. Tong, and R. Peng, "Design of broadband high-efficiency power amplifiers based on a series of continuous modes," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 9, 631-633, Sept. 2014.
doi:10.1109/LMWC.2014.2331457

7. Xia, J., X. Zhu, and L. Zhang, "A linearized 2-3.5GHz highly efficient harmonic-tuned power amplifier exploiting stepped-impedance filtering matching network," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 9, 602-604, Sept. 2014.
doi:10.1109/LMWC.2014.2324752

8. Gao, L., X. Y. Zhang, S. Chen, and Q. Xue, "Compact power amplifier with bandpass response and high efficiency," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 10, 707-709, Oct. 2014.
doi:10.1109/LMWC.2014.2340791

9. Chen, K. and D. Peroulis, "A 3.1-GHz class-F power amplifier with 82% power-added-efficiency," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 8, 436-438, Aug. 2013.
doi:10.1109/LMWC.2013.2271295

10. Moon, J., S. Jee, J. Kim, J. Kim, and B. Kim, "Behaviors of class-F and class-F−1 amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 6, 1937-1951, Jun. 2012.
doi:10.1109/TMTT.2012.2190749

11. Canning, T., P. Tasker, and S. Cripps, "Waveform evidence of gate harmonic short circuit benefits for high efficiency X-band power amplifiers," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 8, 439-441, Aug. 2013.
doi:10.1109/LMWC.2013.2272317

12. Sharma, T., R. Darraji, and F. Ghannouchi, "A methodology for implementation of high-efficiency broadband power amplifiers with second-harmonic manipulation," IEEE Trans. Circuits Syst. II, Express Briefs, Vol. 63, No. 1, 54-58, Jan. 2016.
doi:10.1109/TCSII.2015.2482139

13. Huang, H., B. Zhang, C. Yu, J. Gao, Y. Wu, and Y. Liu, "Design of multioctave bandwidth power amplifier based on resistive second-harmonic impedance continuous class-F," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 9, 830-832, Sept. 2017.
doi:10.1109/LMWC.2017.2734764

14. Morimoto, Y., et al., "A multiharmonic absorption circuit using quasi-multilayered striplines for RF power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 1, 109-118, Jan. 2017.
doi:10.1109/TMTT.2016.2614929

15. Hayati, M., A. Sheikhi, and A. Grebennikov, "Class-F power amplifier with high power added efficiency using bowtie-shaped harmonic control circuit," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 2, 133-135, Feb. 2015.
doi:10.1109/LMWC.2014.2382649

16. Chen, K., T. Lee, and D. Peroulis, "Co-design of multi-band high-efficiency power amplifier and three-pole high-Q tunable filter," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 12, 647-649, Dec. 2013.
doi:10.1109/LMWC.2013.2283876

17. Son, J., Y. Park, I. Kim, J. Moon, and B. Kim, "Broadband saturated power amplifier with harmonic control circuits," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 3, 185-187, Mar. 2014.
doi:10.1109/LMWC.2013.2292925

18. Tuffy, N., L. Guan, A. Zhu, and T. J. Brazil, "A simplified broadband design methodology for linearized high-efficiency continuous class-F power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 6, 1952-1963, Jun. 2012.
doi:10.1109/TMTT.2012.2187534

19. Carrubba, V., et al., "On the extension of the continuous class-F mode power amplifier," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 5, 1294-1303, May 2011.
doi:10.1109/TMTT.2011.2117435

20. Chen, K. and D. Peroulis, "Design of broadband highly efficient harmonic-tuned power amplifier using in-band continuous class-F-1/F mode-transferring," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 12, 4107-4116, Dec. 2012.
doi:10.1109/TMTT.2012.2221142

21. Kim, J. H., G. D. Jo, J. H. Oh, Y. H. Kim, K. C. Lee, and J. H. Jung, "Modeling and design methodology of high-efficiency class-F and class-F−1 power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 1, 153-165, Jan. 2011.
doi:10.1109/TMTT.2010.2090167

22. Aggrawal, E., K. Rawat, and P. Roblin, "Investigating continuous class-F power amplifier using nonlinear embedding model," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 6, 593-595, Jun. 2017.
doi:10.1109/LMWC.2017.2701316

23. Carrubba, V., et al., "Exploring the design space for broadband PAs using the novel continuous inverse class-F mode," Proc. 41st Eur. Microw. Conf.(EuMC), 333-336, IEEE, Oct. 2011.

24. Merrick, B. M., et al., "The continuous harmonic-tuned power amplifier," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 11, 736-738, Nov. 2015.
doi:10.1109/LMWC.2015.2479850

25. Sharma, T., et al., "Generalized continuous class-F harmonic tuned power amplifiers," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 3, 213-215, Mar. 2016.
doi:10.1109/LMWC.2016.2524989

26. Sharma, T., et al., "High-efficiency input and output harmonically engineered power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 2, 1002-1014, Feb. 2018.
doi:10.1109/TMTT.2017.2756046