Vol. 50
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-12-11
Highly Directive Hybrid Plasmonic Leaky Wave Optical Nano-Antenna
By
Progress In Electromagnetics Research Letters, Vol. 50, 85-90, 2014
Abstract
A novel traveling-wave hybrid plasmonic optical antenna is proposed for operation at the standard telecommunication wavelength of 1550 nm and with the frequency bandwidth of more than 16 THz. A highly directive radiation pattern with 15.2 dBi directivity and 82% efficiency is achieved. The developed antenna benefits from high directivity advantage of leaky-wave antennas, and low loss properties and confinement of hybrid plasmonic structures. The designed device can have applications in inter/intera chip optical interconnect, and absorption enhancement of photodetectors, and solar cells.
Citation
Leila Yousefi, "Highly Directive Hybrid Plasmonic Leaky Wave Optical Nano-Antenna," Progress In Electromagnetics Research Letters, Vol. 50, 85-90, 2014.
doi:10.2528/PIERL14110405
References

1. Novotny, L. and N. Van Hulst, "Antennas for light," Nat. Photon., Vol. 5, 83-90, 2011.
doi:10.1038/nphoton.2010.237

2. Tang, L., S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, "Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna," Nat. Photon., Vol. 2, 226-229, 2008.
doi:10.1038/nphoton.2008.30

3. Cao, L., J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, "Resonant germanium nanoantenna photodetectors," Nano Lett., Vol. 10, 1229-1233, 2010.
doi:10.1021/nl9037278

4. Anker, J. N., W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, "Biosensing with plasmonic nanosensors," Nat. Mater., Vol. 7, 442-453, 2008.
doi:10.1038/nmat2162

5. De Wilde, Y., F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, "Thermal Radiation Scanning Tunnelling Microscopy," Nature, Vol. 444, 740-743, 2006.
doi:10.1038/nature05265

6. Schuller, J. A., T. Taubner, and M. L. Brongersm, "Optical antenna thermal emitters," Nat. Photon., Vol. 3, 658-661, 2009.
doi:10.1038/nphoton.2009.188

7. Alu, A. and N. Engheta, "Hertzian plasmonic nanodimer as an efficient optical nanoantenna," Phys. Rev. B, Vol. 78, 195111, 2008.
doi:10.1103/PhysRevB.78.195111

8. Alu, A. and N. Engheta, "Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas," Phys. Rev. Lett., Vol. 101, 043901, 2008.
doi:10.1103/PhysRevLett.101.043901

9. Sederberg, S. and A. Elezzabi, "Sierpiski fractal plasmonic antenna: A fractal abstraction of the plasmonic bowtie antenna," Opt. Express, Vol. 19, 10456-10461, 2011.
doi:10.1364/OE.19.010456

10. Sederberg, S. and A. Y. Elezzabi, "Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared," Opt. Express, Vol. 19, 15532-15537, 2011.
doi:10.1364/OE.19.015532

11. Lee, H., S. You, P. V. Pikhitsa, J. Kim, S. Kwon, C. G. Woo, and M. Choi, "Three-dimensional assembly of nanoparticles from charged aerosols," Nano Lett., Vol. 11, 119-124, 2010.
doi:10.1021/nl103787k

12. Dregely, D., K. Lindfors, M. Lippitz, N. Engheta, M. Totzeck, and H. Giessen, "Imaging and steering an optical wireless nanoantenna link," Nature Communications, Vol. 5, 4354, 2014.
doi:10.1038/ncomms5354

13. Kosako, T., Y. Kadoya, and H. F. Hofmann, "Directional control of light by a nano-optical YagiUda antenna," Nat. Photon., Vol. 4, 312-315, 2010.
doi:10.1038/nphoton.2010.34

14. Liu, X. and A. Alu, "Subwavelength leaky-wave optical nanoantennas: Directive radiation from linear arrays of plasmonic nanoparticles," Phys. Rev. B, Vol. 82, 144305, 2010.
doi:10.1103/PhysRevB.82.144305

15. Wang, Y., A. S. Helmy, and G. V. Eleftheriades, "Ultra-wideband optical leaky-wave slot antennas," Opt. Express, Vol. 19, 12392-12401, 2011.
doi:10.1364/OE.19.012392

16. Novotny, L. and S. J. Stranick, "Near-field optical microscopy and spectroscopy with pointed probes," Ann. Rev. Phys. Chem., Vol. 57, 303331, 2006.
doi:10.1146/annurev.physchem.56.092503.141236

17. Yousefi, L. and A. C. Foster, "Waveguide-fed optical hybrid plasmonic patch nano-antenna," Opt. Express, Vol. 20, 195111, 2012.
doi:10.1364/OE.20.018326

18. Ooi, K. J. A., P. Bai, M. X. Gu, and L. K. Ang, "Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides," Opt. Express, Vol. 19, 17075-17085, 2011.
doi:10.1364/OE.19.017075

19. Yaacobi, A., E. Timurdogan, and M. R. Watts, "Vertical emitting aperture nanoantennas," Opt. Letters, Vol. 37, 1454-1456, 2012.
doi:10.1364/OL.37.001454

20. Song, Q., S. Campione, O. Boyraz, and F. Capolino, "Silicon-based optical leaky wave antenna with narrow beam radiation," Opt. Express, Vol. 19, 8735-8749, 2011.
doi:10.1364/OE.19.008735

21. Sacher, W. D., Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G. Lo, and J. K. S. Poon, "Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler," Opt. Express, Vol. 22, 10938-10947, 2014.
doi:10.1364/OE.22.010938

22. Alam, M. Z., J. Meier, J. S. Aitchison, and M. Mojahedi, "Super mode propagation in low index medium," Quantum Electronics and Laser Science Conference, JThD112, 2007.

23. Dai, D. and S. He, "A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement," Opt. Express, Vol. 17, 16646-16653, 2009.
doi:10.1364/OE.17.016646

24. Salvador, R., A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, "Analysis of hybrid dielectric plasmonic waveguides," Selected Topics in Quantum Electronics, IEEE Journal, Vol. 14, 1496-1501, 2008.
doi:10.1109/JSTQE.2008.920035

25. Avrutsky, I., R. Soref, and W. Buchwald, "Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap," Opt. Express, Vol. 18, 348-363, 2010.
doi:10.1364/OE.18.000348

26. Wu, M., Z. Han, and V. Van, "Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale," Opt. Express, Vol. 18, 11728-11736, 2010.
doi:10.1364/OE.18.011728

27. Pitarke, J. M., V. M. Silkin, E. V. Chulkov, and P. M. Echenique, "Theory of surface plasmons and surface-plasmon polaritons,", Reports on Progress in Physics, Vol. 70, 1, 2007.

28. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd edition, Wiley, 2005.

29. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370, 1972.
doi:10.1103/PhysRevB.6.4370