Vol. 22

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-03-29

Selective Suppression of Electromagnetic Modes in a Rectangular Waveguide by Using Distributed Wall Losses

By Chong-Qing Jiao
Progress In Electromagnetics Research Letters, Vol. 22, 119-128, 2011
doi:10.2528/PIERL11013102

Abstract

An over-mode metal rectangular waveguide is widely used in the generation, propagation, coupling, and transition of microwaves. When applied as the beam-wave interaction circuit of some high power microwave devices, a rectangular waveguide is expected to operate at a single electromagnetic mode. To do that, unwanted modes resulted from spurious oscillations should be suppressed. In this paper, a method of selective suppression of electromagnetic modes in rectangular waveguides by loading distributed losses in some special position of waveguide inner wall is presented. By using the method, the unwanted modes can be attenuated much larger relative to the operating mode. The presented method can be used to improve the stability of rectangular waveguide beam-wave interaction circuit.

Citation


Chong-Qing Jiao, "Selective Suppression of Electromagnetic Modes in a Rectangular Waveguide by Using Distributed Wall Losses," Progress In Electromagnetics Research Letters, Vol. 22, 119-128, 2011.
doi:10.2528/PIERL11013102
http://jpier.org/PIERL/pier.php?paper=11013102

References


    1. Soekmadji, H., S. Liao, and R. J. Vernon, "Experiment and simulation on TE10 cut-off reflection phase in gentle rectangular downtapers," Progress In Electromagnetics Research Letters, Vol. 12, 79-85, 2009.
    doi:10.2528/PIERL09090707

    2. Rothwell, E. J., A. K. Temme, and B. R. Crowgey, "Pulse reflection from a dielectric discontinuity in a rectangular waveguide," Progress In Electromagnetics Research, Vol. 97, 11-25, 2009.
    doi:10.2528/PIER09090905

    3. Hussain, A. and Q. A. Naqvi, "Fractional rectangular impedance waveguide," Progress In Electromagnetics Research, Vol. 96, 101-116, 2009.
    doi:10.2528/PIER09060801

    4. Hammou, D., E. Moldovan, and S. O. Tatu, "V-band microstrip to standard rectangular waveguide transition using a substrate interated waveguide (SIW)," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 221-230, 2009.
    doi:10.1163/156939309787604319

    5. Zhao, D., Y. G. Ding, Y. Wang, and C. J. Ruan, "Linear analysis of a rectangular waveguide cyclotron maser with a sheet electron beam," Phys. Plasmas, Vol. 17, No. 11, 113110, 2010.
    doi:10.1063/1.3514596

    6. Mineo, M., A. Di Carlo, and C. Paoloni, "Analytic design method for corrugated rectangular waveguide SWS THz vacuum tubes," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2479-2494, 2010.
    doi:10.1163/156939310793675745

    7. Radack, D. J., K. Ramaswamy, W. W. Destler, and J. Rodgers, "A fundamental mode, high power, large-orbit gyrotron using a rectangular interaction region," J. Appl. Phys., Vol. 73, No. 12, 8139-8145, 1993.
    doi:10.1063/1.353453

    8. Lau, Y. Y. and L. R. Barnett, "A note on gyrotron traveling wave amplifiers using rectangular waveguides," IEEE Trans. Electron. Devices, Vol. 30, No. 8, 908-912, 1983.
    doi:10.1109/T-ED.1983.21236

    9. Ferendeci, A. M. and C. C. Han, "Linear analysis of an axially grooved rectangular gyrotron for harmonic operation," Int. J. Infrared Millim. Waves, Vol. 6, No. 12, 1267-1283, 1985.
    doi:10.1007/BF01013214

    10. Soekmadji, H., S. L. Liao, and R. J. Vernon, "Trapped mode phenomena in a weakly overmoded waveguiding structure of rectangular cross section," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 1, 143-157, 2008.
    doi:10.1163/156939308783122706

    11. Kumar, N., U. Singh, A. Kumar, H. Khatun, T. P. Singh, and A. K. Sinha, "Design of 35 GHz gyrotron for material processing applications," Progress In Electromagnetics Research B, Vol. 27, 273-288, 2011.

    12. Jain, R. and M. V. Kartikeyan, "Design of a 60 GHz, 100kW cw gyrotron for plasma diagnostics: Gds-V.01 simulations," Progress In Electromagnetics Research B, Vol. 22, 379-399, 2010.
    doi:10.2528/PIERB10061508

    13. Malek, F., J. Lucas, and Y. Huang, "The experimental result of a low power x-band free electron maser by electron pre-bunching," Progress In Electromagnetics Research, Vol. 101, 43-62, 2010.
    doi:10.2528/PIER09121604

    14. Chu, K. R., et al., "Theory and experiment of ultrahigh gain gyrotron travelingwave amplifier," IEEE Trans. Plasma. Sci., Vol. 27, No. 2, 391-404, 1999.
    doi:10.1109/27.772266

    15. Jiao, C. Q. and J. R. Luo, "Study on the suppression of gyro-BWO by distributed wall losses," J. Infrared. Milli. Terahz. Waves, Vol. 30, No. 9, 924-930, 2009.
    doi:10.1007/s10762-009-9522-6

    16. Pao, K. F., et al., "Selective suppression of high order axial modes of the gyrotron backward-wave oscillator," Physics of Plasmas, Vol. 14, No. 9, 093301, 2007.
    doi:10.1063/1.2773708

    17. Song, H. H., et al., "Theory and experiment of a 94 GHz gyrotron traveling-wave amplifier," Phys. Plasmas, Vol. 11, No. 5, 2935-2941, 2004.
    doi:10.1063/1.1690764

    18. Zhang, K. Q. and D. J. Li, Electromagnetic Theory for Microwaves and Optoelectronics, Springer, New York, 1998.

    19. Jackson, J. D., Classical Electrodynamics, 2nd edition, Wiley, New York, 1975.

    20. Collin, R. E., Field Theory of Guided Waves, McGraw-Hill, New York , 1960.

    21. Hung, C. L. and Y. S. Yeh, "The propagation constants of higher-order modes in coaxial waveguides with finite conductivity," Int. J. Infrared. Mill. Waves, Vol. 26, No. 1, 29-39, 2005.
    doi:10.1007/s10762-004-2029-2

    22. Luo, J. R. and C. Q. Jiao, "Effect of the lossy layer thickness of metal cylindrical waveguide wall on the propagation constant of electromagnetic modes," Appl. Phys. Lett., Vol. 88, No. 6, 061115, 2006.
    doi:10.1063/1.2172735

    23. Jiao, C. Q., N. Zheng, and J. R. Luo, "A comparison of the attenuation of high-order mode in coaxial waveguide due to inner and outer conductor losses," J. Infrared. Milli. Terahz. Waves, Vol. 31, No. 7, 858-865, 2010.
    doi:10.1007/s10762-010-9642-z

    24. Yan, S., B. K. Huang, W. S. Jiang, and Y. S. Jiang, "Calculation of the propagation constants in waveguides with imperfect conductor by the perturbed boundary condition method," Journal of Microwaves, Vol. 26, No. 2, 35-38, 2010 (in Chinese).