Vol. 84

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-06-14

Radiation Pattern Analysis and Modelling of Coplanar Vivaldi Antenna Element for Linear Array Pattern Evaluation

By Nurhayati Nurhayati, Eko Setijadi, and Gamantyo Hendrantoro
Progress In Electromagnetics Research B, Vol. 84, 79-96, 2019
doi:10.2528/PIERB19040502

Abstract

This paper reports an electric field approximation model of the Coplanar Vivaldi antenna on the E-plane. The study is conducted in three stages, i.e., (i) evaluating the impact of various geometrical parameters to the Vivaldi's element performance at different frequencies, (ii) modeling the electric field patterns, and (iii) applying the model to evaluate the linear total array pattern. The examination of the Coplanar Vivaldi element with fractional bandwidth of 133% in the 2-10 GHz band shows the individual roles of the antenna width, the tapered slot length, the opening width and the slope of the tapered slot in determining the VSWR, resistance, reactance and E-Field performance. The Vivaldi element should be designed with element width more than 0.5λ and less than λ to reach better performance of VSWR and E-field. The longer the tapered slot (>λ) with the high value of opening rate of tapered slot, the smaller the E-field. The E-field increases with increasing opening width of the tapered slot. Knowledge of the influence of each geometry parameter is then used as a reference in developing the E-field pattern approximation model of the Vivaldi element. The derivation of the Vivaldi approximation model is started from the pattern of a horn antenna because both antennas share a similar feature, i.e., the enclosure of the E-field propagation within a tapered slot resulting in a directional radiation pattern. The result of Coplanar Vivaldi modeling is verified against the results of electromagnetic computational simulation and measurement. The Vivaldi element model is useful for total array pattern analysis to save computation time and to provide flexibility in the evaluation of array design.

Citation


Nurhayati Nurhayati, Eko Setijadi, and Gamantyo Hendrantoro, "Radiation Pattern Analysis and Modelling of Coplanar Vivaldi Antenna Element for Linear Array Pattern Evaluation," Progress In Electromagnetics Research B, Vol. 84, 79-96, 2019.
doi:10.2528/PIERB19040502
http://jpier.org/PIERB/pier.php?paper=19040502

References


    1. Gibson, P. J., "The Vivaldi aerial," Proc. 9th European Microwave Conf., 101-105, 1979.

    2. Natarajan, R., J. V. George, M. Kanagasabai, L. Lawrance, B. Moorthy, D. B. Rajendran, and M. Alsath, "Modified antipodal Vivaldi antenna for ultrawideband communication," IET Microwaves, Antennas & Propagation, Vol. 10, No. 4, 401-405, 2016.
    doi:10.1049/iet-map.2015.0089

    3. Ma, K., Z. Zhao, J. Wu, S. M. Ellis, and Z.-P. Nie, "A printed Vivaldi antenna with improved radiation patterns using two pairs of eye-shaped slots for UWB applications," Progress In Electromagnetics Research, Vol. 148, 63-71, 2014.
    doi:10.2528/PIER14043003

    4. Wang, P., H. Zhang, G. Wen, and Y. Sun, "Design of modified 6–18 GHz balanced antipodal Vivaldi antenna," Progress In Electromagnetics Research C, Vol. 25, 271-285, 2012.
    doi:10.2528/PIERC11101202

    5. Fioranelli, A., S. Salous, I. Ndip, and X. Raimundo, "Through-the-wall detection with gated FMCW signals using optimized patch-like and Vivaldi antennas," IEEE Trans. Antennas Propag., Vol. 63, No. 3, 1106-1116, 2015.
    doi:10.1109/TAP.2015.2389793

    6. Yang, Y., Y. Wang, and A. E. Fathy, "Design of compact Vivaldi antenna arrays for UWB see through wall applications," Progress In Electromagnetics Research, Vol. 82, 401-418, 2008.
    doi:10.2528/PIER08040601

    7. Yan, J. B., S. Gogineni, B. C. Raga, and J. Brozena, "A dual-polarized 2–18 GHz Vivaldi array for airbone radar measurement of snow," IEEE Trans. Antennas Propag., Vol. 64, No. 2, 781-785, Feb. 2016.
    doi:10.1109/TAP.2015.2506734

    8. Natarajan, R., M. Kanagasabai, and J. V. George, "Design of X-band Vivaldi antenna with low radar cross section," IET Microwaves, Antennas & Propagation, Vol. 10, No. 6, 651-655, 2016.
    doi:10.1049/iet-map.2015.0585

    9. He, S. H., W. Shan, C. Fan, Z. C. Mo, F. H. Yang, and J. H. Chen, "An improved Vivaldi antenna for vehicular wireless communication systems," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1505-1508, 2014.

    10. Moosazadeh, M., S. Kharkovsky, J. T. Case, and B. Samali, "UWB antipodal Vivaldi antenna for microwave imaging of construction materials and structures," Microwave and Optical Technology Letters, Vol. 59, No. 6, 1259-1264, 2017.
    doi:10.1002/mop.30509

    11. Esmati, Z. and M. Moosazadeh, "Reflection and transmission of microwaves in reinforced concrete specimens irradiated by modified antipodal Vivaldi antenna," Microwave and Optical Technology Letters, Vol. 60, No. 9, 2113-2121, 2018.
    doi:10.1002/mop.31307

    12. Moosazadeh, M., "High-gain antipodal Vivaldi antenna surrounded by dielectric for wideband applications," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4349-4352, 2018.
    doi:10.1109/TAP.2018.2840839

    13. Nurhayati, G. Hendrantoro, T. Fukusako, and E. Setijadi, "Mutual coupling reduction for a UWB coplanar Vivaldi array by truncated and corrugated," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 12, 2284-2288, Dec. 2018.
    doi:10.1109/LAWP.2018.2873115

    14. Shin, J. and D. H. Schaubert, "A parameter study of stripline-fed Vivaldi notch-antenna arrays," IEEE Trans. Antennas Propag., Vol. 47, No. 5, 879-886, May 1999.
    doi:10.1109/8.774151

    15. Chio, T. H. and D. H. Schaubert, "Parameter study and design of wide-band widescan dual-polarized tapered slot antenna arrays," IEEE Trans. Antennas Propag., Vol. 48, No. 6, 879-886, 2000.
    doi:10.1109/8.865219

    16. Nurhayati, G. Hendrantoro, and E. Setijadi, "Effect of Vivaldi element pattern on the uniform linear array pattern," IEEE International Conference on Communication, Networks and Satellite , 42-47, 2016.

    17. Nurhayati, G. Hendrantoro, and E. Setijadi, "Total array pattern characteristics of coplanar Vivaldi antenna in E-plane with different element width for S and C band application," Progress In Electromagnetics Research Symposium Abstracts, 604-612, Singapore, Nov. 19–22, 2017.

    18. Schaubert, D. H., "Wide-band phased arrays of Vivaldi notch antennas," International Conference on Antennas and Propagation, 6-12, Apr. 1997.

    19. Mailloux, R. J., Phased Array Antenna Handbook, Artech House, Boston, London, 2005.

    20. Reid, E. W., L. O. Balbuena, A. Ghadiri, and K. Moez, "A 324-element Vivaldi antenna array for radio astronomy instrumentation," IEEE Trans. Antennas Propag., Vol. 61, No. 1, 241-249, Jan. 2016.

    21. Kindt, R. W. and W. R. Pickles, "Ultrawideband all-metal flared-notch array radiator," IEEE Trans. Antennas Propag., Vol. 58, 3568-3575, Nov. 2010.

    22. Vescovo, R., "Constrained and unconstrained synthesis of array factor for circular arrays," IEEE Trans. Antennas Propag., Vol. 43, 1405-1410, Dec. 1995.
    doi:10.1109/8.475929

    23. Florence, P. V. and G. S. N. Raju, "Optimization of linear dipole antenna array for sidelobe reduction and improved directivity using APSO algorithm," IOSR Journal of Electronics and Communication Engineering, Vol. 9, 17-27, 2014.
    doi:10.9790/2834-09611727

    24. Mohammadian, H., N. M. Martin, and D. W. Griffin, "A theoretical and experimental stufy of mutual coupling in microstrip antenna arrays," IEEE Trans. Antennas Propag., Vol. 37, 1217-1223, Oct. 1989.

    25. Janaswamy, R. and D. H. Schaubert, "Analysis of the tapered slot antenna," IEEE Trans. Antennas Propag., Vol. 39, No. 9, 1058-1065, Sep. 1987.
    doi:10.1109/TAP.1987.1144218

    26. Janaswamy, R. and D. H. Schaubert, "Characteristic impedance of wide slotline on low-permitivity substrate," IEEE Trans. on Microwave Theory and Techniques, Vol. 34, 900-902, Sep. 1986.
    doi:10.1109/TMTT.1986.1133465

    27. Balanis, A. C., Antenna Theory Analysis and Design, John Wiley & Sons, Arizone State University, 1997.